
AD-A260 944

RL-TR-92-248
Final Technical Report
October 1992

ARIES: THE REQUIREMENTS/
SPECIFICATION FACET FOR
KBSA

USC Information Sciences Institute

David R. Harris, W. Lewis Johnson, Kevin M. Benner,
and Martin S. Feather DT1C

EcIB2 3 i993f

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.

93-03712

Rome Laboratory
Air Force Materiel Command

Griffiss Air Force Base, New York

94•..•

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-248 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

FOR THE COMMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3CA) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

P Jaic reoritng buied for tUs coclan of rforrran i estryed toavwage I houi per response, rnd ng " tfre for reviwrg rrrucLtons seacrcnwg existrig oata soQce3
Wd twig Vi- daMa reed, an crietrig wid revehwng thecoliection of rfumrin Serd cloffireris regwadg n bI•iden estrnae or" o rwh aspec &"

coilectanof c rim rncaxr g suggestions for redecng ths budwr to Waswgon Headqjwters Sevies. Directorate for rirmawn Operatom r epoets I 2 e
Davis H~tway. Sure 1204. Atkrort VA 20.43o? and to the Office of Managemewt and BudgK Paperwor Redcit n Proec (0704-018M. Was rnon DC 2C503

1. AGENCY USE ONLY (Leave Blank) REPORT DATE 3. R PORT TYPE AND DATES COVE2ED
October 1992 Final Mar 89 - Jan 92

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ARIES: THE REQUIREMENTS/SPtCIFICATtON FACET FOR KBSA
PE - 63728F
PR - 2532

6. AUTHOR(S) TA - 0W
David R. Harris, W. Lewis Johnson, Kevin M. Benner, W[T - 25
and Martin S. Feather

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(E$) 8. PERFORMING ORGANIZATION
USC Information Sciences Institute REPORT NUMBER
4676 Admiralty Way

Marina del Rey CA 90292-6695 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

Rome Laboratory (C3CA) AGENCY REPORT NUMBER

525 Brooks Rd R[,-TR-q2-248
Griffiss AFB NY 13441-4505

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Douglas A. White/C3CA/(315) 330-3564

12a. DISTRIBUTION/AVAILABIUTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release: distribution unlimited.

13. ABSTRACT(~m-ir,-m words)

This report describes a knowledge-based assistant for Acquisition of Requirements and
Incremental Evolution of Specifications (ARIES). ARIES is a system developed by the
University of Southern California Information Sciences Institute and Lockheed Sanders
to address the needs of the Knowledge-Based Software Assistant (KBSA) for the early
phases of a system life cycle. ARIES supports the evolutionary development of formal
system specifications in a multi-presentational environment in which informal
application requirements are captured and elaborated using representations familiar to
users and applications engineers. ARIES, through the formalization of activities and
creation of a knowledge base, enables extensive machine support for evaluation and
reuse of system design artifacts. The concepts explored in this effort will he of
interest to anyone interested in: 1) what lies ahead for computer aided software
engineering; 2) identifying the key issues for automating the software development
process; 3) the value of knowledge-based approaches to formal system development; and
4) the benefits of having a wide spectrum of representations available to the design
process.

14. SUBJECT TERMS know l edge-based sottware engineering. sottware 15 NUEROF PACES
requirements, software specifications, artificial intelligence.
computer aided software engineering, formal specifications. ,6 PRICE CODE

formal methnd_ _

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABS I RACI
OF REPORT OF THIS PAGE OF ABSTRACT

UNCASSIFIED UNCLASIF ED UNCLASS IFIED 1I,
tN.SN 7540-01-20-55M St dFor W "9u'.*

Pres:c-d0 AN -: -8
298-1 02

Accesion For
NTIS CRA&I
DTIC TAB
Unannounced 0
Justification

ByS..........................
Contents E Availability Codes

Dist Avail and / or

Special

DTIC QUALrTY INSPflC¶IED 3

1 Overview and Motivation 01 1

1.1 Specification development for large complex systems 4

1.2 The state-of-the-practice 5

1.3 The ARIES paradigm-requirements acquisition and specification evolution 10

1.3.1 Assumptions about the process 10

1.3.2 The approach to automation 11

1.3.3 The output of the process 11

1.4 History of the ARIES Project 11

1.4.1 The KBSA Report-short term and long term goals 11

1.4.2 The Requirements Assistant 12

1.4.3 The Specification Assistant 13

1.4.4 Motivation for the ARIES project 13

1.5 Project approach 14

1.5.1 Knowledge-based technology 14

1.5.2 Transformation technology 14

1.6 Use of real world examples 15

1.6.1 Developing a road traffic control specification 16

1.6.2 Developing an air traffic control specification 17

1.6.3 Lessons learned 19

1.7 ARIES facilities 21

1.7.1 Presentation tools 21

1.7.2 Reuse tools 22

1.7.3 Reasoning 23

1.7.4 Evolution 23

2 An Example of Use 24

2.1 The analyst's view of ARIES 25

2.2 Reviwig rc(llir tesl ..lts 27

2.3 Performing a modification 27

2.4 Reviewing the results of the transformation 31

2.5 Summary 33

3 Representation Issues 35

3.1 Basic underlying semantics 36

3.2 Advanced semantic features 38

3.2.1 Specialization in ARIES 38

3.2.2 Parameterized concepts 40

3.2.3 Higher-order operators 41

3.2.4 Temporal operators 41

3.3 Scope of knowledge represented 41

3.4 Features not supported 42

3.5 Mapping narrow formalisms onto the underlying representation 43

3.5.1 Mapping via abstracted representations 43

3.5.2 Mapping via transformation 47

ii

3.6 Integrating textual and relational representations 47

4 Presentation 51

4.1 Construction of presentations 51

4.2 Presentation implementation 55

4.2.1 Implemented presentation styles 55

4.2.2 Implemented presentations 60

4.3 Operational and instructional modes 67

4.4 Related work 68

5 Cooperative Requiremnents Analysis and Reuse 71

5.1 Folders and workspaces 72

5.2 Folder structuring 74

5.3 Reuse techniques 76

5.3.1 Representation of multiple models 76

5.3.2 Parameterized specifications 79

5.3.3 Reuse through specialization 79

5.3.4 Reuse of higher-order properties 79

5.4 The impact on automated tools 80

5.5 Examples of Reuse 80

5.5.1 Adjusting a use list 80

5.5.2 Merging conflicting definitions 82

6 Automatic Reasoning for Requirements Engineering 86

6.1 A framework for reasoning 87

6.1.1 Desirable prop)agation 88

6.1.2 Tractable computation 90

111..

6.2 Approaches to reasoning in ARIES 90

6.3 Automatic constraint analysis 91

6.3.1 Constraint propagation 91

6.3.2 Incremental static analysis 94

6.4 Static analysis tools 95

6.4.1 Static analysis tools 95

6.5 ARIES Simulation Component 95

6.5.1 Validation questions 97

6.5.2 Influence Analysis 103

6.5.3 A Validation Question and Specification's Behavior Space 10S

6.5.4 Approximation and Reformulation 109

6.5.5 Related Works 110

6.5.6 Evaluation of ASC 113

7 Evolution 115

7.1 Why evolution occurs 115

7.2 Evolution transformations-support for evolution 117

7.3 Advances in ARIES with respect to evolution 118

7.3.1 Recap: the state of evolution transformations in the Specification
Assistant 118

7.3.2 ARIES advances 118

7.4 Semantic properties and effects 120

7.4.1 Dimensions of semantic properties 120

7.4.2 Generic network modification operations 121

7.4.3 Examples of dimensions of semantic properties and changes within
them 122

7.5 Transformations, effects and semantic dimensions 124

iv

7.5.1 Linking manipulations within prlil entatioun; to 'ff'cts 24

7.5.2 Linking evolution transformations to effects 126

7.6 Related work 127

7.7 Examples of evolution transformations 128

8 Future Directions 132

8.1 Improved acquisition and presentation modes 132

8.1.1 Domain-specific acquisition and presentation 133

8.1.2 Acquisition using demonstration examples 133

8.2 Representation issues 133

8.2.1 Modularity for information flow diagrams 134

8.2.2 Modularity for state transition diagrams 134

8.3 Support for cooperation and reuse 136

8.3.1 Merging workproducts and other CSCW support 136

8.3.2 Reuse constructions and retrieval 137

8.3.3 Folder structuring and heterogeneous knowledge representations . . 137

8.4 Additional intelligent assistance 138

8.4.1 Formalism for the specification evolution process 139

8.4.2 Guidance for non-experts 139

8.5 Evaluation 139

9 Acknowledgenients 140

V

List of Figures

1.1 Overburdened software engineers 2

1.2 Analysts using ARIES 3

1.3 Physical decomposition hierarchy starting from aas 18

1.4 Functional decomposition hierarchy for accc 19

2.1 Review and modification of requirements 25

2.2 Overall view of the ARIES interface 26

2.3 Overview of the handoff folder 28

2.4 Event taxonomy for init-handoff 29

2.5 English paraphrase of the init-handoff event 29

2.6 Parameter menu for transformation 31

2.7 New English paraphrase of init-handoff 32

2.8 English paraphrase of modified manual-init-handoff 32

2.9 State-transition view of handoff cnablement 33

2.10 Reusable Gist view of enter-enabled-handoff 34

3.1 Taxonomy of kinds of motion 37

3.2 An RG presentation of an invariant 38

3.3 Definitions of takeoff and move 39

4.1 Constructing a presentation 52

vi

4.2 Spreadsheet presentation of nonfunctional requirements 56

4.3 Translation from the internal representation to RG 59

4.4 Definition of Event Taxonomy presentation 61

4.5 ARIES Process Model presentation 64

4.6 An instructional script 69

5.1 Taxonomy of kinds of motion 73

5.2 The aircraft folder 73

5.3 Typical relationship among folders 75

5.4 Folders containing several models for the "direction" concept 77

5.5 Specialization hierarchy of direction folders 78

5.6 Folders used by automatic-tracking-capability 81

5.7 Updated use presentation 81

5.8 Final state of the use list for automatic-tracking-capability 82

5.9 Reusable Gist definition of handoff 83

5.10 Definition of init-handoff in handoff folder 84

5.11 Definition of init-handoff in the automatic-tracking-capability folder84

6.1 A Successful Handoff Scenario for Validation Question VQ1 101

6.2 A Handoff Anti-Scenario for Validation Question VQ2 102

6.3 Reusable Gist definition of the event Accept-Handoff 104

6.4 Paraphrase of the event Accept-Handoff 105

6.5 Primitive Influence Graph of the event accept-handoff 106

6.6 Influence Graph of the event accept-handoff 107

7.1 Menu of modifications to the event-taxonomy presentation 124

7.2 Menu of evolution transformations retrieved in response to selecting Create
event-declaration node 125

vii

7.3 An example of an evolution transformation 130

7.4 A taxonomy of transformations 131

viii

Chapter 1

Overview and Motivation

In the Requirements/Specification Facet for KBSA project, we have explored issues and
built plausible models in the field of computer support for the first half of the software
development life cycle. We have built an experimental requirements/specification environ-
ment called ARIES 1 which requirements analysts may use to codify system requirements
in a manner that enables extensive machine support for evaluation and reuse. Many ARIES
components have reached a mature level. Others lay the foundations for advances to
come. In total, the concepts uncovered in our research and the capabilities of the existing
prototype will be of interest to the reader who is investigating the following questions.

"* What lies ahead for Computer-Aided Software Engineering (CASE) tools?

"* What are the key issues for automating the software development process?

"* Is there value-added in knowledge-based approaches to software engineering?

"* Is there value-added in knowledge-based approaches to formal specification develop-
ment?

"* What is really to be gained from having wide-spectrum (informal to formal, abstract
to concrete, application domain to software constructs) representations on-line?

We see the core challenge as being the analysts' need to deal with the large volume and
wide diversity of knowledge associated with the requirements engineering process. Figure
1.1 illustrates the problem. This knowledge includes domain models, initial requirement
conceptions, abstracted views of requirements, formal descriptions of systems, and stereo-
typical ways to modify these descriptions. ARIES embodies our ideas on how to support
analysts to deal effectively with such knowledge. Its features include:

IARIES stands for Acquisition of Requirements and Incremental Evolution of Specifications.

OVERBURDENED

ANALYSTS ICS I0..X
DOMAIN KNOWLEDGE

' JREQS
VO)L

(.-op, XXT (_IMPLEMENTATION
o•OS' KNOWLEDGE

eUSER + + 20

REQUIREMENTS

Figure 1.1: Overburdened software engineers

"* a modularized central repository for requirements information,

"* a single, highly expressive internal knowledge representation scheme,

"* communication support between analysts and the system in terms and styles familiar
to the analyst, and

"* tool support fol the analyst to manage, analyze and evolve requirements information.

Together these features significantly reduce the burden on requirements engineers, enabling
them to perform their tasks more productively and reliably.

ARIES research has addressed several roadblocks in providing automated assistance to the
process of developing formal specifications. One of the principal roadblocks is that there is
a large gap between initial requirement conceptions and more formal machine-manageable
descriptions. ARIES provides tools for the gradual evolution of acquired requirements,
expressed in hypertext and graphical diagrams, into formal specifications. These tools also
alleviate another difficulty with specifications, that it is hard to modify them to reflect
changing understandings of requirements, without inadvertently introducing errors. ARIES
is particularly concerned with problems that arise in the development of specifications of
large systems. Specification reuse is a major concern, so that large specifications do not
have to be written from scratch. Mechanisms are provided for dealing with conflicts in
requirements, especially those arising when groups of analysts work together. Validation

2

Figure 1.2: Analysts using ARIES

techniques, including simulation, deduction, and abstraction, are provided, to cope with
the problem that large specifications are difficult to understand and reason about.

From an artificial intelligence perspective, this work is significant in that it deals with
the representation and presentation of large knowledge bases and the needs for effective
knowledge segmentation so that multiple tools can operate on descriptions at different
levels of abstraction and so that users can effectively communicate with an intelligent
assistant program. Requirements acquisition is a special case of knowledge acquisition,
and many of the techniques in ARIES to support requirements acquisition are of interest
from a knowledge acquisition perspective as well. Examples of such techniques include
transformations for changing domain models, and support for the construction of task-
specific domain models from reusable components.

From a software engineering perspective, this work formalizes software engineering artifacts
and processes so that automated support for software development can be built on a strong
semantic foundation.

This report is organized as follows. The remainder of this chapter provides motivation
for the ARIES work. It identifies shortcomings in conventional CASE approaches, and high-
lights the issues which we feel an advanced requirements engineering support environment
should address. It then outlines the capabilities that have been built into ARIES to help
address these concerns. Chapter 2 presents an example scenario of ARIES in use, illus-
trating a number of ARIES's capabilities and showing how they support the requirements
analysis process. Chapter 3 discusses the issues that must be addressed in order to build
a representation of requirements knowledge that supports such capabilities, and describes
how these issues are attacked in ARIES. Chapter 4 discusses how presentations are sup-
ported. Chapter 5 describes the techniques in ARIES for supporting cooperation between
analysis when developing requirements, and for supporting reuse of previously formalized
requirements. Chapter 6 discusses the approaches which have been taken in ARIES to rea-

3

soiling about specifications. Chapter 7 describes the mechanisms for supporting evolution
in ARIES. Chapter 8 identifies areas of potential future investigation, building upon the
accomplishments so far.

1.1 Specification development for large complex sys-
tems

Our design decisions for ARIES follow from observations on the requirements/specification
process and on the modes of analyst/ARIES interaction necessary for effective automation
support. We draw no distinction between "requirements" and "specifications" of systems.
Rather, we envision a seamless requirements/specification process resulting in a softw are
requirements specification (SRS) which describes a system to be built at many difierent
levels of detail or formality. This position echoes the position taken by others working in
requirements analysis, such as Davis [17].

Davis, in his book Software Requirements Analysis and Specification [17], identifies a num-
ber of properties that an SRS should have:

e it should be correct-the requirements that it contains are in fact required of the
system to be built;

* it should be unambiguous, so that each requirement may be interpreted in only one
way;

* it should be complete, describing all properties that the system should have;

e it should be verifiable-there is some cost-effective means for testing whether the
requirement is met;

* it should be consistent-no subset of the requirements conflict;

* it should be understandable by non-computer specialists;

* it should be modifiable-necessary changes to requirements may be made easily,
completely, and consistently;

* it should be traceable-each requirement may be traced to its origin in other docu-
ments, and may be traced to the software component(s) satisfying the requirement;
and finally,

* it should be annotated-each requirement should be marked to indicate how necessary
and volatile it is.

4

Clearly these propertie's are difficult to ataii1 ait thel sami timne. Nev''rth1l0 ie'. It i., lusfuIl
to think of requirements anilysis as attempting to gradually achieve themn to the gre•etst

extent possible.

From the perspective of computer-based support, the focus needs to be as much on support-
ing attempts to gradually achieve these goals as it is on determining if a given specification

meets the goals as stated. With this in mind, we turn to a review of how SRS goals are being
being met today and how they might be met in the future with increasingly sophisticated
software tool support in the hands of large teams of analysts.

1.2 The state-of-the-practice

The ARIES effort grows out of and reacts to the essentially informal practices in require-
ments management that exist in the work place today. This discussion of the state-of-
the-practice of requirements management covers several areas. We begin by pointing out
the crucial importance of requirements specification within the Department of Defense
(DOD) community. Next we look at two emerging trends-the role of reuse and the focus
on process improvement (specifically, the impact of Software Engineering Institute (SEI)

contractor assessment). Finally, we examine the requirements management functionality
available in commercial tools, and some deficiencies in this functionality.

For DOD sponsoring agencies, requirements specification is an integral part of software
procurement. In preparing a Request For Proposal (RFP), the responsible agency states
precisely what functionality is needed for the proposed system. Within this agency, a
designated group of analysts-having expertise in writing requirements specifications-
converses with the users of the proposed system in order to gain an understanding of user
needs. Then the requirements specification analysts take the users' input and transforms
it into a requirements document appropriate for directing the bidding contractors. A
clear, exact, and understandable statement of the needed functionality is necessary in
order to correctly convey to the bidding contractors what it is that the contracting agency
wants built, thereby enabling the bidding contractors to accurately develop a proposal that
addresses the users' needs.

After contract award, one of the first products developed by the winning contractor is
the SRS which documents the results of the software requirements analysis phase. Many
programs are developed in accordance with DO-STD-2167A, which specifies the format and
content of the SRS. This standard requires that an SRS identify the external interfaces,
the capability requirements, the internal interfaces between those capabilities, and trace
requirements between the SRS and the sponsor-produced document. This SRS permits

the sponsor to get a clear understanding of exactly what the system will be built to do

5

aild is the hasis of achiieving agrecinent betwxeen the contractor aid the sponsor. After
agreement, further requirements changes from the sponsor are "out of scope" and may
result in costly re-negotiation. In addition, the SRS is a key document for the contractor
during the subsequent development phases. Stakeholders use the SRS to trace requirements
to the design and code to assure that the resulting system satisfies the requirements.
During system test, the software test organization tests the final system against the SRS to
guarantee compliance. Questions from the sponsor during acceptance testing are resolved
by referring to the agreed upon SRS.

An important area of interest within the DOD community is the reuse of software artifacts.
In the past, the reuse emphasis has been on informally reusing code from a previous project.
This usually failed because the old code didn't fit the new architecture. What is needed
is a process that involves planning and engineering for software families rather than single
systems. This includes an analysis of the domain to identify the common and variable
parts, and a reusable requirements specification for the family. Even an informal reusable
requirements document. would be very helpful to analysts. Such a document would describe
the common parts of the family of systems and separately describe the variable parts. To
reuse this specification, the analyst would extract the common part as well as any variation
that would d(escribe the particular instance being developed. If no variation was currently
identified that applied to this instance, the analyst would write the needed variable part
and add it to the reusable specification, thereby broading its description of the family.
This reusable requirements specification is valuable at all stages of software development
because analysts can use it to understand which portions of the system are reusable and
which portions will require modification.

A sampling of current activities in the reuse area include:

" At the San Antonio I workshop, the fifth in a continuing series of Joint Logistics
Commanders sponsored government and industry workshops focusing on identifying
DOI) software problems and solutions, recommendations were made for instituting
reuse. These recommendations were that a software application be viewed as a
member of a family of systems, domain analysis be employed, and guidelines be
established for creating reuse assets. As a result, a Software Reuse Subgroup was
formed. This group's initial activities are to develop a guidebook for reuse, organize
a domain analysis workshop, and identify approaches and barriers to reuse.

" In July, 1990, the Defense Advanced Research Projects Agency (DARPA) and the SEI

Software Architectures Engineering Project hosted a workshop on domain-specific
software architectures.2 The participants presented position papers on how model-
based, common architectures can improve the development of large-scale defense

2This meeting was reported in the Software Engineering Institute's publication Bridge, Sept. 1990.

6

systems. Addressing generality and the reduction of complexity in application areas
will allow the development and reuse of common structures across those areas.

9 The Software Productivity Consortium (sPc), an aerospace industry initiative, is
seeking to bring quality and productivity improvements to software development
practice. A Reuse Maturity Technical Advisory Group has been established to ad-
vance the processes, methods, and tools involved with software reuse. A reuse library
tool has been developed to support classification, storage, and retrieval of reuse as-
sets. Pilot projects are being pursued in domain analysis and the development of
a reusable requirements specification. The importance of these efforts is revealed
by the report by a member company that they have lost contracts to competitors
with established reuse libraries and domain specific software architectures in their
proposals.

One further item that needs to be addressed in the area of reuse is the cost of the effort.
Significant resources are needed to do a domain analysis and to write the initial reusable
requirements specification. Companies are reluctant to make this investment. However,
successes by those companies willing to forge ahead will illustrate how beneficial this in-
vestment can be.

Another important emerging theme is the SEI initiative for standardizing and improving
the software development process. This initiative, sponsored by the DOD, aims to improve
the entire software process. The SEI has developed a Capability Maturity Model to rate
the maturity of a software process. This model consists of five levels, level one being
the initial level and level five being the optimal, mature level. The initiative offers some
specific objectives for improved requirements management-an area that often receives
limited attention in practice. The current maturity model requires that contractors put
mechanisms in place for controlling changes to the software requirements, for ensuring
that the software design teams understand each software requirement, and for ensuring
traceability between the software requirements and top-level design. In the draft version
of the maturity model due to be instituted in November, 1992, capabilities for requirements
management are expanded and called out as a separate key process area for achieving level
two. Many contracting agencies are beginning to use maturity ratings as a means of
assessing contractor qualifications. For example, requests for proposals may state that the
bidding contractor must be at a maturity level of three or be considered high risk, or that
the bidding contractor must be at a maturity level of two with defined plans to reach level
three. This initiative can be expected to create an increased awareness of requirements
level issues within the DOD community.

Given the importance of requirements management, commercial companies have provided
CASE tools to assist in performing software requirements analysis and software requirements
traceability. Before the advent of CASE technology in the mid-1980's, analysts wrote an

7

sits directly in text foirmat with little coupling to background engineering analysis. These
documents frequently did not include needed detail and could be ambiguous. With the use
of CASE, the resulting SRS contains more detail and is more precise. There are numerous
CASE products that are hosted on a wide range of platforms. However, these products tend
to have the following core features in common.

" An Entity Relationship Diagram is used to show information modeling at a high level
of abstraction.

"* A Context Diagram is defined to show the system and all its external interfaces.

"* Data flow diagrams are used to define the software functionality, and the processes
on the data flow diagram are decomposed to a low level of detail.

" Mini-splecifications provide a textual description of the execution of the lowest level
processes on the data flow diagrams.

" All data elements are identified down to their primitive form (units, range, accuracy)
and are retained in a data dictionary. This single data, dictionary assures consistency
among terms used by the analysts working on different sections of the sRs.

" The flow of control and various system states are illustrated by finite state machines,
e.g. State Transition Diagrams, State Event Matrices.

"* Methodology and consistency checking of the diagrams and data elements can be
requested by the user.

" Requirements traceability is provided by the ability to associate requirements with
the entities in the software decomposition.

" Templates of MIL-STD SRSs are provided and the information from the database is
inserted to create the finished document.

Defining a system to precise detail does result in more time spent in the software re-
quirements analysis phase of the program when compared to the conventional practice.
However, the software development team will iron out many details early in the process,
thus saving time later in the development lifecycle. The sponsor will receive a more detailed
specification, thereby getting a better picture of what will be built. And the software test
organization will be able to test the system against a detailed document, thereby enhancing
testing accuracy.

When investigating technology developments in all software arenas, it must be asked
whether the technology is sufficient to support a particular computational paradigm. With

8

CASIE technology, deficiencies in fuictionality or tedious and(frustrating pro)cedure's can liim-

pact a program's schedule and wipe out any benefits gained from using a nachlie iianiage'd
approach. These deficiencies in the existing tools fall into three categories: limited expres-
sive power, lack of automatic reasoning, and limitations on obtaining informative views of
what has been specified.

The current CASE tools lack the expressive power required for capturing high level speci-
fications in general and for dealing with reuse issues in particular. For example., a process
on a data flow diagram must be decomposed into one and only one child process or miini-
specification. There is no capability to define an alternate decomposition if a certain
condition is true. Therefore for a family of systems, the common part can be defined. But
there is no way to tie the other variations into the same model and be able to select the
common part and the desired variation(s) depending on conditions for this instance of the
system. Thus the DOD thrust toward families of systems cannot be sul)ported by current
CASE technology.

Another deficiency with the current CASE tools is their lack of automatic reasoning. WVlhen
a requirement changes, updates must be dlone manually in all areas that are affected(by
the change. Also there is no verification that if one condition is true, then all Conditions
that depend on it are in agreement. The analyst must verify, that this agreement exist's by
reviewing all the conditions. This tedious process turns into a major effort for specifications
for large systems.

Lastly, there are limitations in producing informative views of specifications. In the area
of requirements traceability, the current CASE tools generate reports, but frequently the
reports do not include requirements traceability. Sponsors need this information to assure
that indeed their requirements have been adhered to in the specification work. The typ-
ical format for this information is a requirements traceability matrix indicating the flow
of requirements from the government specification to the SRS and the Software Design
Document. The matrix is used to verify that the system built complies with the system
requested by the sponsor and agreed to by the contractor, and the software test orga-
nization uses this matrix to ensure that compliance during component and system test.
In addition, the production of textual documents with the current CASE tools is often a
significant effort. Many of the tools use an external publishing system to produce publica-
tion quality documents. This process can be very lengthly for a substantial document and
frequently engineers must make formatting corrections manually. For example, text must
be resized to fit within the confines of a table. While this does not limit the functionality
of the CASE tool, it does have a substantial impact on a program's schedule.

9

1.3 The ARIES paradigm-requirements acquisition
and specification evolution

The ARIES paradigm consists of a broad conception of the requirements/specification pro-
cess and a commitment to a specific technology base for achieving substantial computer
assistance.

1.3.1 Assumptions about the process

ARIES assumes a model of software development in which there are multiple goals for re-
quirements analysis. The process we outline may differ from abstract models of software
development, but we feel it matches the actual practice of today's engineers and suggests
how that practice will evolve with the inclusion of more and l)etter software tool support.
Requirements analysis produces a software requirements specification (SRS), describing
the characteristics of the system to be built. However, such documents are themselves
but a means to achieve a more fundamental goal, namely communication of requirements
to designers and stakeholders (end-users, procurement agents, etc.). In fact engineering
media-diagrams, outlines--used along the way toward producing a written document can
be extremely informative. Executable prototypes are another useful product, both to help
communicate requirements and to validate the accuracy of those requirements. Finally,
we assume that system requirements are not developed from scratch and thrown away.
Instead, a goal of the requirements analysis process should be to reuse requirements from
other systems or classes of systems, where appropriate, modifying these requirements as
necessary. Likewise, we assume that analysts have some desire to organize their require-
ments specifications in such a way that they might be reusable on future projects.

Typically groups of many individuals, representing differing specialties and working at dif-
ferent levels of abstraction, perform the requirements engineering task. The work proceeds
through diverging and converging attempts at domain modeling, working toward devel-
oping a shared vocabulary to be used for describing requirements, and through extensive
exploration of specification development issues along multiple paths.

One can roughly break the process into three phases-acquisition, evolution, and analysis.
An acquisition process incorporates new information about a system from analysts, who
may collect this information from a variety of sources, including interviews with clients and
source documents describing the domain in which the system will operate. An evolution
process, directed by analysts, reformulates statements about a system so that they are
more precise, formal, and/or implementable. It also corrects inaccuracies in requirements,
and revises requirements that cannot be satisfied strictly as stated. An analysis process

10

explores consequences of requirements statements, looking for inconsistencies.

1.3.2 The approach to automation

The section above describes a process that could be performed entirely manually or with
the aid of krowledge-based assistance.

There are many approaches to providing machine support for requirements/specification
work. The degree of automation is one important dimension. At one extreme are expert
system approaches which attempt full automation of some part of the process. At the
other extreme are systems which provide very limited support-you can say anything with
little consistency checking, no propagation is possible because no underlying formal model
exists. We are aiming in the middle at intelligent assistance. In ARIES, facilities operate
on the system knowledge base, a repository of knowledge about stereotypical domains,
reusable requirements/specification components, and descriptions of specific systems being
developed. Generic knowledge and individual system specifications are represented in the
same manner, and tools apply equally to both. We expect that the analyst will make all
the critical decisions while the machine will help to put the pieces of the system together-
through knowledge of artifacts and typical processes.

1.3.3 The output of the process

The output from this ARIES process consists of two parts: an implementable specification,
which in an automatic programming setting serves as input to a mechanical optimiza-
tion process, and on-line requirements communication vehicles-documents, diagrams, and
simulations-which describe the system to be built in precise terms. These two outputs
subsume the role of SRS's in conventional software development.

1.4 History of the ARIES Project

1.4.1 The KBSA Report-short term and long term goals

ARIES is a product of the ongoing Knowledge-Based Software Assistant (KBSA) program.
KBSA, as proposed in the 1983 report by the US Air Force's Rome Laboratories [30], was
conceived as an integrated knowledge-based system to support all aspects of the software
life cycle. Such an assistant would support specification-based software development: pro-
grams would not be written in conventional programming languages, but instead would

11

lbe written iII ani (x(e'litaitle specification language. from which efficient. implementations
would be Iiechaniicallv derived. First, the process of requirements analysis generates a
foirmal specification from informal requirements. The formal specification then initializes
a mechanical transformation process, yielding an optimized program. Analysts validate
specifications through examination and analysis of a formal specification, not by testing
the optimized code. Analysts maintain programs by modifying the specifications, and de-
riving new optimized programs. In a complete KBSA system, and to some extent in ARIES

as well, requirements analysis tools and implementation tools are integrated into a single
environment, allowing analysts to perform exploratory prototyping during requirements
analysis. Although ARIES is part of KBSA, the design of ARIES does not preclude its use in
situations where a full KBSA system is not available.

The original KL3SA report called for extensive work aimed at each of several phases of
software development. For each phase a list of goals were advocated to direct the efforts.
The AlIES effort buildls on the results of two earlier efforts addressing those goals. At
Lockheed Sanders, we built th le Knowledge-Based Requirements Assistant (KIB13A) [37]. At
UIsc/isI, specification construction, validation, and evolution goals were addressed in the
Knowledge-Based Specification Assistant [65, 45, 44]. We briefly describe each of these
systenis i the iiext pmragraphs.

1.4.2 The Requirements Assistant

The KBSA long-range goals for the requirements facet were to provide "comprehensive re-
quirements management, intelligent editing of requirements, testing of requirements for
completeness and consistency (both self-consistency and consistency with application do-
main models), performing requirements reviews, maintaining and transforming require
ments in response to changes, decomposing and refining requirements into executable
specification languages, and acquiring requirements knowledge." [30]

The KBRA prototype realized many of these goals. Facilities for acquisition of informal
requirements, entered as structured text and diagrams, were developed. KBRA's limited
case-fr'ame-based natural language understanding ability assisted in the formalization of
informal text by recognizing words in a lexicon of domain concepts. KBRA allowed analysts
to describe systems from different points of view, e.g., data flow, state transition, functional
decomposition, spreadsheets of nonfunctional properties, and text outlines. An internal
representation of the system being built integrated these different views. It was also able
to generate an SRs document from the system descriptions acquired through the multiple
acquisition modes.

12

1.4.3 The Specification Assistant

The KBSA Report's goals for the specification facet were to manage the first formal repre-
sentation of the system to be built. Specifications were to be validated, used as a testable
prototype, and used as the starting point for source-to-source program transformations
which would be used to convert the specification into an efficient implementation.

The principal contribution of the Knowledge-Based Specification Assistant was the devel-
opment of evolution transformations for specification modification [46]. Evolution trans-
formations are operators that modify system descriptions in a controlled fashion, affecting
some aspects of a requirements statement while retaining others unchanged. They also
p)ropagate changes throughout a system description. Significant effort was invested in
identifying evolution steps (both meaning-preserving and non-meaning-preserving) that
routinely occur in the specification development process, and automating them in the
form of ('volution trx;ulsforiiations. The Specification Assistant also provided vali(dation
tools in the forml of a l)arapllhraser which translates specifications into English [73. 58], a
symbolic evaluator for simulatinig the specification and proving theorems about it [14], and
static analysis tools which aut onmatically maintain and update analysis information as the

sl)ecificatimn is transfornmed [47].

1.4.4 Motivation for the ARIES project

These early efforts intersected in several unanticipated and informative ways-pointing
out the interconnection between requirements and specification concerns and setting the
stage for the ARIES project. Tools that were developed for one phase often could be
applied in the other phase as well. As illustration, analysts might wish to use KBRA's data
flow diagram presentation during the end stages of specification development. Inversely,
analysts would clearly like to have specification assistant simulation capabilities available
at the earliest stages of requirements acquisition. Im)ortantly, we recognized the need to
p)rovide for a smooth transition between informal acquisition modes (an "electronic white
board" metaphor) and formal manipulation modes (evolution transformations al)plied to
a formal language). Overall, we concluded that if the capabilities of the Requirements
Assistant and the Specification Assistant were integrated into a common framework, the
resulting system would provide more effective sllpport than either system did by itself.

Performing such an integration, however, involved solving some technical problems that
neither precursor system had addressed. For example, although the KIBRA supported mul-
tip)le notations, the semantics of these notations did not overlap; furthermore, the expres-
siveness of the KIBRA's notations was limited. Iintegration with the Specification Assistant
forced us to support additional notations with overhlpping semantics, some of which are

13

highly expressive. This led to significant extensions both to the underlying representation
franework and to the presentation system. Other technical p)roblems arose as we extended
ARIES to more complex problems, so that the scalability of ARIES technology could be
demonstrated. Issues of knowledge organization, sharing, and reuse became increasingly
critical, as did issues of how to support groups of analysts working together on a project.
Our work has by no means solved all of these problems, but significant progress has been
made.

1.5 Project approach

Our ap)proach has been to use knowledge-based technology in general, use a transforma-
tional paradigm in particular, and to direct the research by applying it to large complex
dlomnaills.

1.5.1 Knowledge-based technology

Our approach has been to represent requirements/specification concerns in a single com-
mon knowledge base. Individual units of system description are treated as examples of
general concepts and are subject to underlying reasoning mechanisms which propagate
information and check for consistency as an analyst evolves a specification. The basic
units of system descriptions in ARIES are types, instances, relations, events, and invariants.
Airports, radars, aircraft, airspace are examples of types in the air traffic control domain.
Logan and Los Angeles International are examples of instances of airports. The control
relation models an important aspect of this domain. It connects controllers to aircraft in
the airspace. Events include actions of agents such as the move event. Invariants establish
restrictions on behavior. For example, an invariant might express what happens to the
control relation when an aircraft moves between sectors of the airspace. Any of the illus-
trated examples can be described in many different ways-informal or formal, abstract or
concrete. In order to ensure consistency in the underlying reasoning, we have chosen to
represent all such descriptions in one common way. Details about the different unit types
are presented in Chapter 3

1.5.2 Transformation technology

Transformations are encoded knowledge about the process of software engineering. Evo-

lution transformations are the principal mechanism for supporting evolution in ARIES.
They are operators that modify system descriptions in a controlled fashion, affecting some

14

aspects of a requirements statement while retaining others unchanged. In selecting a trans-
formation from a library of transformations, an analyst modifies previous work at a level
significantly above error-prone text editing. The transformation checks the specification
to ensure that the change is consistent with other decisions and automatically propagates
changes throughout the specification. Transformations are represented declaratively in
the knowledge base as a special kind of event; this means that tools for describing and
presenting events can also be used to describe and present transformations.

1.6 Use of real world examples

While our approach to requirements analysis aims to broadly support requirements acquisi-
tion and analysis, we have focused our efforts by working with detailed specific application
domains. In past efforts we had concentrated on several relatively narrow domains, includ-
ing hospital patient monitoring, library systems, signal processing, and tracking. Then
under the Requirements Assistant effort, we started an initiative in requirements for air
traffic control systems. We conducted extensive interviews with air traffic control system
engineers; an engineer created an annotated engineering notebook that we used as reference
material; and the KIBSA community adopted air traffic control as a common application
domain. Subsequently this domain was used to drive the development of the precursor
Requirements Assistant and Specification Assistant prototypes.

Our investigation under ARIES has proceeded in three phases. In the first phase, we recast
and extended earlier work on the air traffic control domain. In a second phase, in the
spring of 1990 ARIES project members performed an experimental exercise in the road
traffic control domain. We felt that this domain would be small enough that it would
be possible to analyze from beginning to end in a limited amount of time. This study
provided insights into how knowledge-based tools could be employed to coordinate groups
of requirements analysts. It also suggested ways of organizing domain and requirements
knowledge in a reusable manner, so that the same components could be used both for
air traffic control and road traffic control. Finally, we returned to the air traffic control
domain, to flesh out earlier efforts based on many of the insights derived from the smaller
road traffic control study.

The following two sections draw from these experiments. First, we describe some the
general issues that are associated with road traffic control specification; then we give a
detailed analysis of evolution in the broader air traffic control domain.

15

1.6.1 Developing a road traffic control specification

In the road traffic control exercise, each project memlber worked independently on one
aslpect of the road traffic control problem. We then compared notes to find common
themes and to compare this work with the body of air traffic control requirements that
we had already formalized. The following are some of the issues that different project
members investigated in analyzing the road traffic control problem:

"* understanding what restrictions must be placed on the duration of traffic light signals
to ensure safe and expeditious flow of traffic,

"* identifying requirements by viewing the problem as an instance of a generic scheduling
l)rol)lem, and determining what general requirements of scheduling problems apply
to road traffic control,

"* idl'ntifying possible states of the traffic lights, and conditions under which the systom
changes state, and

* sketching possible algorithms for coordinating lights.

There were other issues that wcre not explicitly raised, but which were implicit in a number
of these investigations, such as how the traffic lights, the traffic light controller, and traffic
sensors would be connected to each other.

One place where the tension between coordinated work and independent work was strong
was in modeling the application domain. It was readily apparent that everyone had a
similar intuitive model of the road traffic control domain. This included concepts such as
vehicles, roads, colors, and directions. There were also common notions of system com-

ponents, including traffic lights and roadbed sensors. At the same time, there were key
differences in domain models, depending upon what task each analyst was performing.
For example, two distinct models of vehicle motion arose. In one, vehicles appear at the
entrance to the intersection, traverse the intersection, and then disappear. This corre-
sponds roughly to the information that a traffic light system has about the environment
solely on the basis of what road sensors can provide. In another model, vehicles have a
distance from the intersection, a velocity, and an acceleration, and approach and depart
frlom the intersection iin a continuous process. This latter model was needed to understand
the requirements imposed on a traffic light system because of vehicle behavior (e.g., how
much time must be allowed between light changes). We needed a way to support such

conflicting models, and at the same time understand how requirements stated in terms of
one model might be reformulated in terms of another model.

16

The road traffic control analysis inade use of several notationis--text. dia"giaiis. No one

notation would have been adequate by itself. The primary notations used wNere natural lan-

guage, state transition diagrains, entity-relationship-attribute notations, and mathematical
constraints. People would sometimes describe requirements first in natural language, and
then write formal statements to capture the meaning of the natural language. In order for
other people to understand these formal statements, traces back to the original natural
language were extremely important.

Simulation and execution were useful for getting the requirements right. Requirements
statements that seemed reasonable at first in fact permitted anomalous behavior, such
as traffic lights changing unnecessarily. Simulation made it possible to understand the
dynamics of the domain properly; for example, a simulation of traffic flow through the
intersection helped to determine how long it takes for traffic waiting at an intersection to
resume normal flow.

1.6.2 Developing an air traffic control specification

To demonstrate the power of the ARIES approach, and its ability to handle large complex
specification prol)lems, we have devoted significant effort to a single domain, namely air
traffic control. WeC have used two sources for this work. First, we have been modeling
requirements for a particular system-the control system used for air traffic control in the
airspace around Tempelhof Airport in Berlin. Second, we have studied the requirements
for U.S. domestic en route air traffic control systems, i.e., those systems responsible for
the control of air traffic cruising at the high altitudes reserved for jet aircraft. These
requirements are drawn from manuals on flight procedures (e.g., [4]), and from the ex-
periences of the Federal Aviation Administration's Advanced Automation Program [41],
whose goal is to develop the next generation of air traffic control systems. We have also
interviewed requirements analysts in this domain, and information processing specialists
with the current air traffic control automation system.

This domain pointed out the need for tools which help manage the diversity of components
associated with a system description. The Federal Aviation Administration's Advanced
Automation System (AAS) actually includes descriptions of multiple systems. First of all.
analysts distinguish between the intermediate stage computer facility that will be delivered
in the near term and the ultimate AAS, which will support air traffic control into the next
century. The intermediate delivery will consist of new automation support for controllers
within the existing organization of air traffic control facilities. The ultinmate delivery will
support a new organization of the entire air traffic control system, in which a new kind of
air traffic control center called an air control facility (ACF) is introduced which takes over
the functions of a combination of centers in the current air traffic control organization.

17

Physical Decoposition for AAS
CESILRES

MOVIFY

JOIN

DESTROY

CREATE

PRONTE

SPL ICE

REMOVE

Figure 1.3: Physical decomposition hierarchy starting from aas

Even from this simple overview, the need for engineers to decompose complex objects (sys-
tems, functions, data) into manageable-sized components becomes very apparent. Figures
1.3 and 1.4 show some of the project-specific decompositions that are important. 3 We
have captured these decompositions in ARIES constructs called folders. Details of folder
concepts and implementation are taken up in later sections of this report. Here we infor-
mally illustrate a few air traffic control folders to demonstrate the need for segmentation
and organization of complex projects.

The uppermost folder in this tree is called aas; it includes concepts of the AAS program
which apply to any system defined as part of that program. We developed separate folders
with descriptions of the intermediate-stage system (isss) and the computer system to be
used in an Area Control Facility (ACF). These folders are named isss and acf, respectively.
One part of the Area Control Facility is the Area, Control Computer Complex (ACCC), the
hardware-software configuration responsible for operational control of air traffic in a given
sector.

3 III order to give an accurate picture of the use of ARIES, we will make extensive use of screen images
of ARIES. However, the reader should be aware that. ARIES is designed to be used on a color monitor. The
images are somewhat, more difficult, to read in black and white, because important color distinctions are
missing. The prollem is evident, in this figure: the boxes in the diagram appear to run together, whereas on
a color display the borders of each box can be easily seen.

18

Functional Decomposition for ACCC
C•STIUP•

HOSIFY

JOINE

CREATEI

Figure 1.4: Functional decomp~osition hierarchy for accc

Other folIders are used to organize the different functional areas of the individual systems
being described. Figure 1.4 showvs the various functional decomposition folders for the Area
Control Computer Complex. At the lowest level of detail, we have developed folders for
particular funct iona~l areas: ha ndoff, flight-data-processing, traffic-management-capabilities,
automatic-tracking-capability, and surveillance-data-processing.

1.6.3 Lessons learned

The above exp~eriments led to a number of conclusions regarding the nature of the speci-
fication development p~rocess. Several central issues relating to specification development
wei e identified: coordlinati ng lmult~iple users and viewpoints, capturing requirements that
can he shared across systems, and sharing core concepts and knowledge across domains.

1.6.3.1 Multiple viewpoints must be coordinated

The requirements for future air traffic control systems are extremely detailed: system de-
scrip~tions for the Advanced Automation System (AAS) run into the hundreds of pages. The
work of sp)ecification must 1)e div'ided among nmultiple analysts in order to be feasible. In

19

mIr curre'nt analrsis. aild forlializatiion of sections of the AAS requirements, we find that the
FAA has i(dniitifi('d I)articiilar finctional areas for that system. These areas, including track
processing, flight plan processing, and traffic management, seem to be good candidates for
assignment to diflerent analysts or analyst teams.

However, one impiortant conclusion we have drawn is that a proper balance must be struck
between coordinated and independent work of analysts. Requirements are not like program
modules, that can be handed off to independent coders to implement. There is inevitably
significant overlap between them. They may share a significant amount of common ter-
mninology between them. Requirements expressed in one functional area may have impact
on other functional areas. In the AAS specification, we specified track processing, flight
plan processing, and assignment of control separately. By comparing notes, we then found
that flight plan inforinmation had an impact on how tracks are disambiguated, and that
the process of handing off control of aircraft from one facility to the next had an impact
on when flight plan information is communicated between facility computer systems. Our
approach to this issue has been to work on machine-mediated ways to support separa-
tion and subsequent ilicrging of work products, rather than to force analysts to constantly
coordinate whenevr an area of potential common concern is identified.

1.6.3.2 Inconsistency is pervasive

Separate development of different requirements areas inevitably leads to inconsistencies.
These inconsistencies are a natural consequence of allowing analysts to focus on different
concerns individually. Although consistency is an important goal for the requirements pro-
cess to achieve, we have concluded that it cannot be guaranteed and maintained through-
out the requirements analysis process without forcing analysts to constantly compare their
requirements descriptions against each other. Therefore, consistency must be achieved
gradually, at an appropriate point in the specification development process. Nevertheless,
it may not bl" possible to recognize all inconsistencies within a system description.

1.6.3.3 Multiple models must be supported

Multiple models cause inconsistencies. For example, when analysts specify radar processing
requirements they must model the dynamics of aircraft motion to make sure that the system
is able to track aircraft under normal maneuver conditions. When specifying flight plan
monitoring, however, they can assume that aircraft will move in straight lines from point
to point, and change direction instantaneously, since the time required for a maneuver is
very short compared to the time typically spent following straight flight paths. One way
of resolving such conflicts is to develop a specialization hierarchy that relates these models
to coinilion abstractions.

20

1.6.3.4 Sharing requirements across systems

The designer of an air traffic control system must make sure that computers and human
agents can together achieve the goals of air traffic control, i.e., to ensure the safe, orderly,
and expeditious flow of air traffic. How this will be done by the AAS is to some extent
determined by current air traffic control practice. Thus the next generation of controller
consoles are being designed to simulate on computer displays the racks of paper flight
strips that controllers currently use to keep) track of flights. Yet although air traffic control
practice is codified in federal regulations and letters of agreement, and is thus resistant
to change, the division of labor between computer and human controller is expected to

change over time. The FAA anticipates that new computer systems will gradually be
introduced into the new air traffic control framework over the next twenty years, taking
increasing responsihility for activities that are now performed by controllers. Therefore, it
is important to be alble to represent the overall requirements on air traffic control, without
being forced to (o.mllllit to 1particular computer systems satisfying those requirements.

1.6.3.5 Sharing across domains

Just as there are opportunities for sharing across systems in the same domain, there are
opportunities for sharing across d(omains. The road traffic control iproblem shares certain
characteristics with air traffic control: both problems are concerned with the maintenance
of safe, orderly, and expeditious flow of vehicular traffic. They both assume a common
body of underlying concepts, such as vehicles, sensors, spatial geometry, etc. We have been
endeavoring to model such concepts so that the commonalities and differences across the
two domains are captured.

1.7 ARIES facilities

The key technical contributions of the ARIES effort are in the areas of presentation, reuse,
reasoning, and evolution. The following chapters will explore each of these details in
detail. Before doing so. we indicate why they are so essential for supporting requirements
engineering.

1.7.1 Presentation tools

Presentation tools sulp)port, both acquisition and review. The acquisition tools in ARIES sup-

port analysts in stating requireincnts as simply and directly as possible. If requirements

21

cannot b1)(, iitially stat ,ec in a umaimIm(r that is Intuitive for the analyst or end-user, automa-
tion Sul)p)ort is disconiiected from real concerns and it is difficult for people to ensure that
the requirements are correct. Acquisition in ARIES is accomplished by the following means.
First, analysts use a structured text facility to either enter textual information found in rel-
evant documents or to construct an on-line informal engineering notebook. To the extent
that documents already exist and can be linked to subsequent formal specifications, ARIES

importantly maintains traceability between such documents and the eventually completed
specifications. Second, since natural language by itself is often awkward and ambiguous as
a medium for stating requirements, other notations familiar to analysts are likewise sup-
ported: state transition diagrams, information flow diagrams, taxonomies, decomposition
hierarchies, as well as formal specification languages. Importantly, these notations are all
mapped onto a comnnon rel)resentation of specifications internal to ARIES.

The review process in AllIES al)plies many of the same tools as acquisition, but in reverse.
Information that analysts enter into the system in one notation may be presented by
AllIES in a different notation. Our experience has pointed out that if the analyst has the
opp)ortunity to switch point of view, correctness and completeness of specifications can be
more easily achieved. Most, review tools have an analogue in the acquisition side. In fact,
tle internal pres'nt atmn i) architecture (described below) exploits such analogies whenever

p)ossible.

1.7.2 Reuse tools

Analysts may define requirements by specializing and adapting requirements from ARIES's

knowledge base of common requirements; this makes it easier for analysts to define require-
ments quickly and accurately. The requirement name space is managed through structures
called folder;. Folder developers capture, separate, and relate bodies of requirements infor-
mation. Analysts control the extent to wlhich these folders share information, and gradually
increase the sharing as i~mconsistencies are reconciled. We place a heavy emphasis on cod-
ification and use of doomain knowledge in requirements analysis. Although a number of
researchers have identified domain modeling as a key concern (e.g., Greenspan [101), it is
given short shrift in typical practice. Requirements analysis is usually narrowly focused
on describing the requiremnents for a single system. This is problematic if an organization
is interested in introducing more than one computer system into an environment, or when
the degree of computerization of an organization is expected to increase over time. We
have been modeling particular domains within ARIES, and experimenting with reusing such
knowledge in the engineering of requirements for multiple systems.

92

1.7.3 Reasoning

ARIEIS reasoning cal)abilities help analysts check for inconsistencies in proposed require-
nients, and explore c'onsCquences of decisions. WVe have developed three basic types of
analysis capabilities. First, a sinnilation facility translates descriptions of required behavior
into executable simulations. By populating simulations with interesting concrete instances
of objects, an analyst can determnine whether the stated requirements really guarantee
satisfactory behavior. Second, deduction mechanisms propagate information through the
system description, both to complete it and to detect conflicts and inconsistencies. Third,
abstraction mechanisms extract simplified views of the system description. Using either
simulation or visual inspection, analysts can validate abstracted views of systems more
easily than they can validate full system descriptions. Furthermore, since ARIES derives
an abstraction from the systemn description in a systematic way, the analyst can use this
information to understand how conclusions drawn from the simplified view carry over to

the compl)lete systeim d(ls<cril)tiO l.

1.7.4 Evolution

Evolution mechalimisiiis are central to requirements analysis in ARIES: requirements state-
ments are expected to evolve gradually over time. Evolution transformations are the princi-
pal mnechanisni for supporting evolution in ARIES. They are declarative representations for
stereotypical change encoding the input parameters required, the applicability conditions,
the effects achieved, and the rules that modify system descriptions in a controlled fashion,
affecting sonme aspects of a requirements statement while retaining others unchanged. The
rules propagate changes throughout a system description. We have invested significant ef-
fort in identifying evolution steps (both meaning-preserving and non-meaning-preserving)
that routinely occur in the specification development process, and codifying these steps in
an evolution transformation library. An analyst creates or modifies a specification by in-
voking a transformation from this library. ARIES assists by focusing the analyst's attention
on a fanmily of transformations which are appropriate for achieving specific effects while
working with a specific presentation type.

23

Chapter 2

An Example of Use

The followinig iii iilhlotr S (o•.) of theC I1rincipal Cap)abilities of \lmI.'s, and shows

11hw tlhe(. can 1)be ('1111)1lo)y(ld rig r(qeliili('(n1t anatlysis. The sceinario illustrates what we
1)(,liev(is a tl)icall ,i)i()(d(' (6iring thle d('l(h)lillent of re(quireiient.s specifications.

The sce'lari (',nsi.,ts of thle follh)wing stepls:

1. The analyst reviews, a partial requirements description, developed via previous inter-
action with ARILS:

2. A defcirency in the current requirements description is identified;

3. The analyst (,cidcls how the requirements must be modified in order to correct the

deficiency:

4. An evolution triansforinartion is selected which effects the modification;

3. The iiodified rie(1 iiriie'lins are reviewed, setting the stage for the process to repeat.

It shows how 1)r'eseita.tioin aid evolution tools are combined to support the requirements
analysis process. Other capabilities of ARIES, such as reasoning support, will be explored
later in the report.

The context of this example is a requirem'ents specification for the Federal Aviation Ad-
ministration's Advanced Automation System [41], discussed in Section 1.6.2. We will focus

on one functional area. the lprocess of transferring control of aircraft between controllers
and facilities, known as "handoff." Requirements pertaining to handoff are recorded in
several folders. the most important being a. folder named handoff. At the beginning of the
scenario, the re(jiiri,11nents for handoff have been l)artially identified and formalized; the

24

RIESAFI 3 RFI~ RIESAR3E

Figure 2.1: Review and~ nidfl(ihcatlofl of r'equiremlents

aiialvst liee(s to lcNj('w tilt' requlir('lliil~ts ill this anld other folders, inl order to identify

2.1 The analyst's view of ARIES

\hnanl claInast Uses' Alim s, he or she int~eract~s through a. set of windows, via, the X window
sys teni1. Figure 2.2 shows illi AlI~ II~S interface in use. The mnain window, called the Manager
Window, is Shown at ho(t toni. It is used to control the overall status of the ARIES session,

with functions to load folders into the knowledge base, to select which folders to open in the
ARIES knowledge base. and to control howv to search the knowledge base. It is also used
to construct, lprese~italtiu)ns of folders and of knowvledge ba-se objects. Each presentation
has its own wvindow. Thusi, inter-actionl w-ith ARIES typically is conducted through multiple
Nvilldows at oe.The Manager- 11indlow p)rovides a commi-on dlocuimentation facility for
all lpreselit at bus: as the uiouse 1s inovedl over itenis in the presentation windows, such
as depictions of specc~iheatlion cMiponents or function buttons, descriptions of the items
applear' ill the \ Ia iago 'r Winch)w.

At. the start o)f this scenarioP, the analyst openus the handoff folder, andl requests a presen-
tation of it. He o)r shen phehro(weedls t~o examiniue the contents of the folder, inspecting
indhividulla cmuul~olmlvlt. a*~ld)55si 1)y requiestin~g analysis functions onl components, looking
for err)r5.

25

NIN T NPRPS5CP-m TU: PWI-EL [4') CA*m

hV1 TIýW:F,ý7igr 24:Ovrl0ve4f1h RISitefc

11 fli*: 26

2.2 Reviewing requirements

The analyst can inake use of a variety of presentations in viewing the contents of the handoff
folder. The figures in this chapter show some of presentations that can be employed.
Figure 2.3 shows an overview of the handoff folder. The contents of the folder consists of
declarations of event,, i.e., actions which may be performed by the system or by external
agents, and relations between objects. Other relevant information, such as the types of
objects that, (ain participate in the relations and events, happen not to be defined in this
folder, but are instead defined in other folders to which this folder makes reference.

Graphical presentations are useful for showing the relationships between definitions. Fig-
ure 2.4 shows one such presentation, the event taxonomy for the event init-handoff. Event
taxonomy diagrams shlow the relationships between generic and specialized event descrip-
tionis. It, has the property that functional requirements are inherited from the generic
descriptions to the slp(e('ialized descriptions. This diagram shows the relationship between
three events:

"* init-handoff, which initiates the process of handing off control,

"* automatic-init-handoff, which is performed by the air traffic control system to initiate
handoff automatically, e.g., when a aircraft approaches an airspace boundary, and

"* manual-Init-handoff, which describes handoffs initiated by controller command.

The definitions of these events are all contained in the handoff folder. Each bubble in the
diagram has a two-line label; the top line is the name of the definition, and the bottom
line is the name of the folder that contains the definition. The names are truncated in the
diagram; moving the mouse over the bubble causes the system to display the full names.

In order to see what requirements are associated with init-handoff, its definition must be
viewed in (letail. In this case the medium used is natural language. Natural language gen-
(ration mnakes it p)ossib)le to coinipare formal descriptions directly against informal require-
m'ents dra.wvn frol'm natural language documents or acquired from clients, making validation
much easier. Figure 2.5 shows the English presentation of init-handoff.

2.3 Performing a modification

The description of init-handoff in Figure 2.5 omits an important detail: it does not allow
for the possibility that handoff has been disabled. The analyst determines that a feature
must 1be added so that hil()-fl of individual aircraft can be enabled or disabled.

27

summary
H[A.N.DOFF

DURATION: RELATION-DECLARATION

HANDOFF-IN-PROGRESS: RELATION-DECLARATION

HANDOFF-IN-PROGRESS-ACCEPTED: RELATION-DECLARATION

HANDOFF: EVENT-DECLARATION

INIT-HANDOFF: EVENT-DECLARATION

AUTOMATIC-INIT-HANDOFF: EVENT-DECLARATION

NANUAL-INIT-HANDOFF: EVENT-DECLARATION

TOP-OF-BLOCK-ALTITUDE: RELATION-DECLARATION

WITHIN-HANDOFF-COIPUTED-POINT: RELATION-DECLARATION

TIME-FOR-HANDOFF: RELATION-DECLARATION

DISABLED-HANDOFF2: RELATION-DECLARATION

INHIBITED-HANDOFF: RELATION-DECLARATION

WARN-OF-NO-HANDOFF-ACCEPT-TIME-EXPIRED: EVENT-DECLARATION

ALERT-CONTROLLER: EVENT-DECLARATION

WARN-OF-NO-HANDOFF-TRACK-INHIBITED: EVENT-DECLARATION

WARN-OF-NO-HANDOFF-ACCEPT-DISTANCE-EXPIRED: EVENT-DECLARATION

WARN-OF-NO-HANDOFF-CROSSED-SECTOR-BOUNDRY: EVENT-DECLARATION

LOCAL: RELATION-DECLARATION

I NTERFACILITY-TRANSFER-OF-TRACK-DATA: EVENT-DECLARATION

ADD-TRACK: EVENT-DECLARATION

NOTIFY-REQUEST-FOR-HANDOFF-ACCEPT: EVENT-DECLARATION

ACCEPT-HANDOFF: EVENT-DECLARATION

ý JParameters 77 Qui reset:ý

Figurc 2.3: Overview of the handoff folder

28

Even~r~ti .:,Z,•l Ta on m L -. ._ _ :, -_- . , i r ,

Event Taxonomy for INIT-HANDOFF
GESTUR•ES

MODIFY

JOIN

SPLIT

DESTROY

CREATE

PROMOTEAO

SPLICE

REMOVE

INSERT

UPDATE
SFaremeters 9 Up-A-Level 9 Fiid-Termniology A Alternative-Viev i9 uit reset

Figure 2.4: Event taxononmy for init-handoff

Paraphrase of IflT-HtNDOFF

INIT-HANDOFF is an action of the system. Its sole participant is
a track. To perform an izit-hlndoff, the system sequentially does
the following two steps.

I. The system asserts that the HANDOFF-IN-PROGRESS relation
associates TRACY, current-controller and
receiving-contro ller.

2. The system assigns the track-status of TRACK to
crosstelL

Thwere is a precondition that current-controller must control
TRACK There is a postcondition that TRACK must be track-status
crosstelt.

Ouit Mark Edit

Figure 2.5: English l)aral)hrase of the init-handoff event

29

This ('lali-c is ill iii-ut a ije ()f ýI gclenira (lass, of miodifica tioni Step)s: whenlever an event

op~erates oil a Class of objects, it mnight be useful to add an enabling condition which
mlust lie satisfied III ordler for the event to be initiated. Evolution transformations were
dlevelolpedl inl order to carry out such'l stereotyp~ic modifications. The transformation that
applies this this case Is called define-and-check-er~abling-state. This transformation performs
the followving mnlodlihcat ions:

"* it (lefiules two s'tate'-, anl enabling state and a disablhing state, for some class of object;

"* it (lefmnles two0 hewN\ (YViits. one(wvhich moves an object from the enabling state into

the disabling state. and~ one(which moves a~n object from the disabling state into the

enialling state:

"* It addIs aI ne w pn'On i)to an event selected by the user, ensuring that the event
will 110 t be1)' iitIia I '(if' it 0)1)ratc If'S Illa object ill the dhisablinig state:

"* if thle evenlt ha;1s specializa ions, the preconiditlonl is propagated into the definitions of
'acli sIpcfl;1I.Itloaif . ens'urlin'g that the specialization relationships are p~reserved.

The analyst iniav retrieve thle applropriate evolution transformation by selecting one of
the genieric gestures Shownm onl the left. side of the window in Figure 2.4. These gestures

are applicable to ally lires('i~tit ion that Is rendered graphically; the specific meaning de-

pe'ndI upon the typeCs of ob)jects anid relationiships shown in the presentation. In this case,
section of the gestulre "niodlify" causes ARIES to retrieve and present in a menu all the
transformatio)ns wh11(ich have t lie effect. of modifying event declara~tions (because event dec-
larations are the co()litelit of this p)articumlar presentation). The transformations themselves

are rep~resenltedl withlin tie xR11--'s knowledge base, and hence the analyst can use ARIES

to studyl the details ofl particullar transformations in order to determine the appropriate
one to aplyll. Onuce the anualvst dhirects A niE'S to apply a particular transformation, further
Iinteractlonl occurs bet weemi anualyst andl systemn to provide (or override default values for)
the tramisformna tionis inlput 1)aranieters*.

Once the analyst has Selected the transformation, hie or she enters into a menu the input

1)araminctters for the transformation. The system attemp~ts to be helpful by filling in default

valuecs:,fo 'mlll. Snetevencit txniywspresenting the init-handoff event, that
event is slig)gesteol b) defauilt as the event that will be mnodified. Figure 2.6 shows the

lparanileter mienvii Just before thle transformation is aplhiedl. The analyst has supplied names
for the nlew states that. are creaited: enabled-handoff and disabled-handoff. Once the analyst
is satisfied wvith the inlputs, lie or)I she clicks on the "Done" button on the menu, and the
t ransformnat ion is applied.

30)

EVENT-DECLARATION: INIT-HANDOFF

TE-OF-ENABILED-STATE: ENABLIED-HAOFF

fE-OF-DISABLED-STATE: DISABL ED-HANDOFF

Quit Done

Figure 2.6: Parameter menu for transformation

2.4 Reviewing the results of the transformation

The effects of the traiisforiliation are not immediately apparent, since the analyst initi-
ated the transformialtion from the event taxonomy presentation, and the transformation
preserves the event specialization relationships depicted in that presentation. One way
of viewing the change is to generate a, new English paraphrase and compare the old ver-
sion against the new version. Figure 2.7 shows the new paraphrase of init-handoff. Note
that the precondition of the event has changed: it now incluides the requirement that
disabled-handoff not be true of the track.

Figure 2.8 shows a parapl)rase of manual-init-handoff after the transformation has been
applied. One can see from the figure that the same precondition has also been added to
the requirements for manual-init-handoff, because it is a specialization of init-handoff. If
one were to paralphrase automatic-init-handoff one would find a similar modification there.
The reader may also note that the paraphrase so far says very little about what manual-
init-handoff actually does-one would expect subsequent modifications to elaborate this
definition.

Finally, the analyst iight wish to view the new states and transitions that were created.
Figure 2.9 is a state transition diagram containing the new states and transitions. Two
new states have been defined, named enabled-handoff and disabled-handoff. In addition,
two transitions were defined, one which transitions from the enabled state to the disabled
state, and one which transitions from the disabled state to the enabled state.

State transitions are simply a subclass of event in the ARIES model. Consequently, any
presentation that is suitable for viewing event definitions can also be used for viewing state
transitions. Figure 2.10 shows a Reusable Gist presentation of enter-enabled-handoff. 1 In
this view, enabled-handoff and disabled-handoff appear as unary relations on tracks. enter-

1T"he screen image ri,fers to this language as "Refinable Gist." The name of the language has since been
changed to Reusable Gist.

31

FE1 *ll l~ slH m A.......-

Paraphrase of IMIT-MANDOFF

INIT-HANDOFF is an action of the system. Its sole participant is
a track To perform an init-handoff, tle system sequentialy does
the following two steps.

I. The system asserts that the HANDOFF-IN-PROGRESS relation
associates TRACK, current-controller and
receivin'g-con tro fier.

2. The system a6s6ins the track-status of TRACK to
croastell

There is a precondition that current-controller must control
TRACK and disabled-hwndoff must not be true of TRACKC There is a
postcondition that TRACK must be track-status erosstell.

COUt Mark Edit

Figure 2.7: New English paraphrase of init-handoff

Paraphrase of ¶ANt•IL-INIT-KANDOFF

MANUAL-INIT-HANDOFF Ls an action of thW systelm Its participants
are a track and a receiving-contrOller. There is a precondition that
disabled-handoff must not be trwe of track.

Oult Mark Edit

Figirec 2.8: English paraphrase of modified manual-init-handoff

32

State Transition Diagram for STD-ENABLED-HAMDOFF60968
G[STL•*S

MODIFY

JOIN

CREATE

DEMOTE k T\ER-OISABlED-.-O' FF

PROMOTE

SPtLtICE

INSART

U Parameters N Find-Ter-inloqy 9 Alternative-View 9 Wuit re. I

Figure 2.9: State-transition view of handoff enablement

enabled-handoff's definition is no more and no less than that implied by the modification: it
asserts that disabled-handoff becomes false and enabled-handoff becomes true. If this event
has special requirements in its own right, they will have to be added by the analyst.

2.5 Summary

This scenario illustrates some important capabilities of the ARIES system:

"* Specification fragments may he viewed via a number of different presentations. This
helps analysts to discover gaps and errors in requirements descriptions.

"* Analysts can readily switch between formal views of specifications (e.g., Reusable
Gist), informal views (e.g., English), and graphical views (e.g., state transition dia-
grams).

"* Requirements specifications in ARIES typically make extensive use of specialization
hierarchies. This is one of the mechanisms which ARIES provides to support require-
ments reuse, an(l to help ensure requirements consistency.

33

Refinable Gist for ENTER-flISABLED-HANDOFF

procedure ENTER-DISABLED-HANDOFF(track: fra-ek-d ata::: frack)
1= tc nic(rernove ENABLED-HANDOFF(tracj4;

insert DISABLED-HANDOFFt~trorJO)

Quit Mark Edit

Figure- 2.10: Reuisable Gist view of enter-ena bled- ha ndoff

*Evoluition traiisformatioiis facilitate the iprocess of modifying and elaborating require-
iiients spn'cifiati ii. A sigeristnaincnpromanme fmodifications,

While iiiaiii1taiiiiii"" conisistency b)etween1 sp~ecification comIpIonenfts.

34

Chapter 3

Representation Issues

The chap)ter is c(oiwrii,(Ied with how knowledge lprtaining to requirements engineering is
represented in Ali II.s. The goals for supporting specification evolution impose severe chal-
lenges for the design of represe'ntation and reasoning capabilities. The following are the
most important. challenges.

" Anl extreme breadth of knowledge must be expressible. Specifications of system be-
havior, definitions of do(nain terminology, system organization, and nonfunctional
characteristics must all be representable. The system must even represent significant
information about itself. The transformations are one example of such an intro-
spective rel)resentation,. Another is the system's own model of different kinds of
requirements objects and their relationships, called the ARIES Metamodel.

"* Both strong and weak expressivity are needed. Strongly expressive constructs are
needed in order to define concepts precisely, especially those that will appear in de-
tailed specifications of behavior and system invariants. Examples of such constructs
are temporal and higher-order logical operators. At the same time, analysts use less
expressive, but more convenient, notations during initial acquisition of requirements.
Examples include state transition abstractions and data flow abstractions.

"* Partial sharing between representations must be supported. ARIES's design supports
multiple projects and analysts simultaneously. It should be possible for one person
to work on aircraft handoff, another to work on flight plan processing, and another
to work on an entirely different requirements specification. It is not feasible for
everybody to operate on a single monolithic knowledge base. The folder structuring
mechanisms were developed in order to meet this need.

" Automated reasoning capabilities are required, in spite of the high expressivity of the
representation. It is generally recognized that highly expressive languages are harder

35

to reason al)out, b)oth for machines and for people. We have been deeply concerned
with how to provide sol)histicated automated processing without compromising on

cxl)ressiiveleHs.

6 The internal knowledge representation must not be too closely tied to any one ac-
quisition medium. This makes it possible to present information using a variety of
notations. The internal rel)resentation must be able to support a variety of presen-
tations, and in fact it should be possible to define new presentations more or less at
will.

3.1 Basic underlying semantics

The basic milts of systelmi descriptions in ARIES are types, instances, relations, events,
and inviarif.s.,. Tle types. instances, and relations are needed to represent the entity-
relationship models ninmi in requirements engineering (e.g., [341, [10j). The represen-
tation does not have ally of the limitations common in models derived from programming
languages o• rclati, mill datalta h ,)(els:

" Each type cal have multiple subtyp)es and supertypes. This contrasts with languages
such as Refine in which each type can have at most one supertype. Assuming at
most a single supertyl)e makes certain kinds of processing such as inheritance easier
to compute. However, it limlits the ability to express entity-relationship models of
domimains.

" Each instance (c'l b)e an instance of any number of types simultaneously. Again, this
freedom is nm'eede iii order to represent complex entity-relationship models.

" Relations hold aimnong any types of objects. This contrasts with relational data
mnlodels, in which relations are defined over "atomic domains" ---integers, strings, etc.
It also contrasts with franme-based systems in which relations are stored only as slots
on some special class of object called a "frlame" or a "knowledge base object."

"* Relations need not be binary, but can have arbitrary arity. This makes it unnecessary
to encode ternary relations as binary relations on some artificial object.

"* Relations are fully associative. This contrasts with approaches in which relations
must be defined in pairs, one mapping from the domain to the range and one mapping
from the range to the domain.

Events subsume actions of external agents, such as the move actions shown in Figure 3.1, as
well as systeiii processes, such as the handoff initiation actions in Figure 2.4. Events have

36

Event Taxonomy for MOVE
rESTUKfS

JOIN

SPLIT

"a aDESTROYCREATE -k
,DENHOTE @R
PRME S
IWSERT

Parameters UP-A-Level ind-Terminology -VAltontiV ew Quit reset

Figure 3.1: Taxoinomy of kinds of motion

duration, possibly spanning multiple states in succession, and involving multiple entities
of the system. This contrasts with frameworks such as ERAE, in which events are assumed
alvays to be executed instantaneously.

Events can have preconditions. postconditions, and methods consisting of procedural steps.
They may be explicitly activated by other events, or may occur spontaneously when their
preconditions are met. They may have inputs and outputs. However, event definitions can
affect the state of the system iiin ways other than generating outputs: they can assert and
remove relations between objects, and create and destroy objects. A variety of behavior
models can be map)ped onto this event model: for example, state transitions in state
transition diagrams are modeled internally as events in ARIES.

Invariants are predicates which are required to hold, either at all times or whenever a
particular event is active. Many requirements on system behavior are naturally expressed

as invariants, as are nonfunctional requirements. Figure 3.2 shows an example of an
invariant that holds in the air traffic control domain between the scan period of a radar,
the number of safe contacts for an air traffic control system, and the time before aircraft
reach an air sector boundary.

37

Refinable Gist for IN1l

invariant invl for-aiI(ACCC:ACCC, radar:radar ac.aircraft) ('(scan-period(
radar) ,

sofe-nbr-of-contats(ACCC) , ?

tirnm-to-reach-sector(ac))

Quit Hark Edit

Figure 3.2: An BG presentation of an invariant

3.2 Advanced semantic features

3.2.1 Specialization in ARIES

In comparison to many common knowledge representation systems, ARIES makes more
extensive use of specialization hierarchies; it supports specialization hierarchies for relations
and events as well as types. Several important technical concerns had to be addressed in
order to ensure that such specialization hierarchies are meaningful.

Specialization hierarchies establish subsumption relations between terms. That is, given
two concepts S and T, S is a specialization of T if the following is true:

V(x)S(x) => T(x).

Specialization hierarchies of relations and events are defined in a similar manner. If we
have two binary relations R(x, y) and S(x, y), R is a specialization of S if

V(x, y)R(x, y) =: S(x, y).

Unfortunately, the above definition of specialization only makes sense when the specializa-
tion and the generalization have the same number of parameters, and parameters corre-
spond. With multiple-arity relations and events, developed at different levels of abstrac-
tion, this is rarely the case.

Consider, for example, two events, takeoff and move. Intuitively, it would make sense
for takeoff to be a specialization of move: if an aircraft is taking off, it is also moving.

38

event takeoff[ac : aircraft]
outputs (destination := ac.location-of)
roles (actee := ac, actor := ac)
specialization-of move
precondition ac.location-of is-a ground-location
postcondition ac.location-of is-a air-location A in-flight(ac)

event move [actor:agent, actee:physical-object, destination:location]
precondition --, location-of(actee,destination)
postcondition location-of(actee,destination)

Figure 3.3: Definitions of takeoff and move

However, the two events are likely to have different parameters. In the ARIES model,
takeoff takes as input one parameter, the aircraft taking off. move, on the other hand, has
three parameters: the object being moved, the agent doing the moving, and the location
that the object will be moved to. A simple logical implication between the two concepts
cannot be drawn, because the parameters of the two concepts do not match up. Note
that most schemes for reuse of process descriptions, such as that of Lubars [54], classify
processes and events in terms of their inputs and output. They would thus be unable to
establish a relationship between these two concepts.

The solution to this problem that we provide in ARIES is to reify the events and relations,
i.e., to treat instances of them as objects. When an event starts, an object representing
the event is created; when the event completes, the object is destroyed. Parameters of
the events become attributes of the corresponding event objects. The parameters are not
identified by whether they are inputs or outputs to the process or relation, but rather
according to the semantic role they play. We use as a starting point the roles defined in
the PENMAN Upper Model for modeling natural language, such as actor, object, beneficiary,
location, etc. It is these roles that become the attributes of the associated event objects,
and serve as the basis for classification. Other roles may be defined as specializations of
these domain-independent roles. This approach results in effective classification because
in ensures that concepts classify in a manner similar what people would expect given the
meaning of the natural-language concepts used to describe a particular event or relation.

In the case of takeoff and move, subsumption is defined as follows. Figure 3.3 shows
definitions of takeoff and move rendered in Reusable Gist, our formal specification language.

39

Move actions are represented as objects with three attributes: actor, actee, and destination.
These are the names of the input parameters in the declaration of move. Takeoff actions are
modeled as having four parameters and roles. One of them, ac, is an input parameter-the
aircraft taking off. Another, destination, is an output parameter, bound to the aircraft's
new location when the takeoff is completed. Two other roles, actee and actor, are bound to
the value of the input parameter ac. (Note that these bindings are specified in the roles field
of takeoff, used to indicate semantically meaningful roles that are not explicitly represented
as input data or output data.) When a takeoff event is initiated, a corresponding object is
created, with attributes ac, actor, actee, and destination, corresponding to the parameters
and roles. By the semantics of term subsumption, making takeoff a specialization of move
means that every event object describing a takeoff must also be a well-formed move object.

Note that when an event is a specialization of another event, it must inherit the precondi-
tions and postconditions of the events that it is a specialization of. Thus takeoff inherits
the precondition and postcondition of move, meaning that the location of the aircraft at
the end of the takeoff is different from that at the beginning of the takeoff. Importantly,
this serves as an additional consistency check, something which is useful when we define
methods for some of these events. Suppose that an analyst describes the procedure for
takeoff, which includes receiving clearance from the controller. If the clearance is denied,
the takeoff is aborted. But now the declared specialization hierarchy is inconsistent with
the conditions on move: it is possible to "execute" the takeoff procedure and have no
move occur. The creation, detection, and resolution of such inconsistency is central to the
requirement development process. In this case, to remove the inconsistency, an analyst
could define within a local folder a specialization of takeoff called successful-takeoff, and
make successful-takeoff the specialization of move instead of takeoff.

3.2.2 Parameterized concepts

The approach to specialization described above relies upon all concepts having multiple
roles, each of which have values assigned to them. Roles may be defined in terms of other
roles, e.g., the actor role of takeoff is defined in Figure 3.3 to be the same as the input
of takeoff. It is also possible to define concepts in which roles are declared but unbound.
Such concepts are called parameterized concepts.

An example of the use of parameterized concepts is the following. The ARIES knowledge
base contains a reusable definition of the concept of "tracker," i.e., a system that tracks
the movements of objects such as aircraft. Any particular tracker has a desired accuracy
range, such that the true location and predicted location of objects are within that accuracy
range. In the ARIES representation, the accuracy value is represented as a role, which must
be bound for any particular tracker. The type of object being tracked is also a role which
must be bound to a particular domain type, e.g., commercial-aircraft or missile. When a

40

particular tracker is instantiated, these roles must be bound.

3.2.3 Higher-order operators

Higher-order operators were included in the ARIES Metamodel in order define properties
that hold for classes of concepts. It is often the case that an application-specific concept
must satisfy some generic property, expressed in higher-order terms; referring to the higher-
order property can help to ensure the accuracy of the application-specific definition.

A simple example of a concept that is defined over a class of concepts is the concept of a
symmetric relation. The concept symmetric is defined as follows:

implicit relation symmetric(r:relation-declaration)
iff

arity(r, 2) AV (a:entity, b:cntity) r(a,b) 4 r(b,a)

This defines symmetric as a unary relation that holds for other relations. A relation r is
symmetric if its arity is 2, and if for all objects a and b, if r(a, b) is true then r(b, a) is true.

3.2.4 Temporal operators

Temporal operators make it possible to express invariants that hold between system states
at different points in time. For example, the temporal predicate P as-of Q is true if P is
true at some point in time in which Q is also true. The temporal predicate start P is true
if P is true at the present time, and was not true immediately previously. The temporal
operators in the ARIES representation are the same as those defined in Reusable Gist.

3.3 Scope of knowledge represented

This general framework for representing knowledge is used in ARIES to represent all domain
knowledge in the system, as well as substantial parts of the ARIES system itself.

System descriptions are themselves stored in ARIES as a knowledge base of types and
relations. The knowledge base not only contains definitions of domain types such as aircraft,
it also contains definitions of types of knowledge base objects, such as type-declaration. In
addition to relations between domain types, such as the altitude relation between aircraft
and numbers, the ARIES knowledge base includes relations between knowledge base objects,

41

such as the generalization relation between concept declarations and their supertypes or
generalizations.

Transformations in the ARIES system are represented internally as events. This makes
it possible to define declarative specifications of transformations, including their inputs,
outputs, preconditions, and postconditions.

This self-representing approach affords several advantages. Having declarative specifica-
tions of ARIES components makes it easier for engineers to understand what those compo-
nents are and what properties they have. Tools for describing and explaining knowledge
base components, such as the the ARIES Paraphraser for generating natural language, may
be applied to components of the ARIES system itself.

At the same time, this self-specification approach results in a certain amount of duplication.
The ARIES representation is a representation for specifications, not for implementations.
Thus for each specified construct there is a corresponding implementation of that construct.
For example, for each transformation in the system there is both a declarative specification,
represented using the ARIES representation, and an implemented Lisp function that is
called in order to execute the transformation. The correspondence between specification
and implementation is automatically maintained. At one point during the development
of ARIES the implementations were generated automatically by the ARIES system using
a compiler from the ARIES Metamodel into Lisp. This approach was abandoned simply
because the compiler was constantly being developed and modified, making it less readily
usable. Instead, transformations are defined using special Lisp macros that expand into
both partial specifications and Lisp implementations of the transformations. In the more
rugged ARIES systems planned for the future, such a self-specifying and self-compiling
approach offers distinct advantages.

3.4 Features not supported

This framework might appear to include just about every feature common to knowledge
representation frameworks. However, there are some features that have been intentionally
omitted from the framework, mainly because existing features provide most of what of these
omitted features provide. The most significant such feature is the ability to everload names.
Some knowledge representations ailow one to give two different relations or events the same
name, as long as they apply to distinct classes of objects. ARIES places an emphasis on
defining hierarchies of concepts. If a concept applies to two different categories of objects,
the preferred approach is to determine what the shared meaning is, to define the shared
meaning as a single concept, and to define the individual concepts as specializations of
the shared concept. For example, instead of defining separate methods for each class of

42

object in an object-oriented programming system, one first sp)ecifies the general properties
of the methods as an event. One then defines methods for individual classes of objects as
specializations of the generic event. This helps to avoid the problem of methods that have
the same name but incompatible functionality.

In a full KBSA system some features not currently supported will have to be provided. In
particular, some sort of overloading capability will be needed, even though specialization
hierarchies will continue to be used. Since it is currently possible to use the same name
for two concepts a.s long as the two definitions appear in different folders, an overloading
feature was not given high priority in ARIES.

3.5 Mapping narrow formalisms onto the underlying
representation

In order for a representation such as the ARIES Metamodel to be workable, it is necessary
to be able to map the underlying representation onto the notations which analysts wish
to view and manipulate. Those notations are narrower in scope than the underlying
representation, which incorporates much more information than analysts will be concerned
with at any one time.

3.5.1 Mapping via abstracted representations

For most notations, including diagrammatic notations such as type taxonomies, the map-
ping from representation to notation proceeds in two stages. The first stage is a mapping
from the detailed underlying representation to a narrower abstracted representation. The
second stage maps the abstracted representation onto the notation that the user actually
sees.

The taxonomy diagrams in ARIES are examples of this two-stage approach. The abstracted
representation in a type taxonomy diagram consists of a specific class of objects, namely
type declarations. Three relations are depicted in the presentation: the generalization
relation associating concepts with their generalizations, the name relation associating con-
cepts with their names, and the component relation associating concepts with the folder in
which they are defined. This abstraction of the full knowledge base is then presented in the
display in the form of a tree: each type declaration appears as a node in the tree, the gener-
alization relations appears as edges in the tree, and the other relations are used to generate
labels for the nodes in the tree. The process of associating abstracted representations with
presentation styles is discussed in detail in Chapter 4.

43

Non-orthogonal presentations ;ire sl)p)orted(in the following x iii(tinicr in this system. As
indicated earlier, system descriptions are represented as typed objects associated via rela-
tions, just as ARIES itself models knowledge using types and relations. This information is
modeled in a language called AP5, which provides relational data representations as an ex-
tension to Lisp. Some of the types and relations in ARIES are defined as primitive relations.
Others are defined logically as predicates over other relations. If a relation R(x, y) is de-
fined in terms of some other predicate P, R(x, y) is true for every x and y such that P(x, y)
is true. Other types apd relations are defined procedurally via Lisp functions. If a relation
R(x, y) is defined using a Lisp function f, R(x, y) holds whenever the Lisp expression (f
x y) evaluates to a non-nil value. Examples of relations that are defined procedurally are
information flow relations. Information flow generalizes data flow: it subsumes any access
by a process to properties of objects in its external environment. The information flow
relations in ARIES are defined via procedures that examine the preconditions, postcondi-
tions, and methods of events to determine what information accesses and modifications
are performed.

3.5.1.1 Updating non-primnitive relations

For non-primitive relations, an important technical issue is how to update them. For
example, when a relation R(x, y) is defined in terms of a predicate P, and a component of
ARIES asserts that R is true for some x and y, some other knowledge base updates must
be performed so that P(x, y) is also true. It is not always possible to determine from
the definition of P what knowledge base updates must be performed. This problem is
addressed in one of three ways.

One approach is to make use of AP5's add method and delete method features. AP5 allows
a programmer to specify a complex knowledge base update to perform, or a function to
execute, whenever an attempt is made to add or delete a tuple from a relation.

A second approach makes use of rules that are activated automatically in response to
assertions or retractions of other relations. For example, each term reference appearing in
a folder relates to some concept in the knowledge base, depending upon what terms are
defined in the folder and what other folders are used by the folder. As new term definitions
are added, and links to other folders are added and removed, rules automatically update
the reference relations. Thus if a folder contains a term-reference named level-flight, the
folder does not contain a definition of level flight, and the folder does not use any folder
with a definition of level flight, then no reference relation is asserted for this term-it is
an undefined reference. If the analyst then updates the use list for the folder, making it
use a folder which contains a definition named level-flight, a reference relation between the
term reference and the definition is automatically asserted.

44

The third method of l)erfornning updates is via evolution transfolrmat ions. \\hen an analyst
attempts to nodiýi a presentation, the transformation system retrieves a set of transfor-
mations capable of performing the modification. This mechanism will described in detail
in the evolution section of this report, Chapter 7. When a transformation is selected,
the transformation performs a series of updates to the knowledge base that result in the
abstraction underlying the presentation being modified.

3.5.1.2 When sufficient informnation is unavailable

It is not always possible to generate a presentation, given the information available in the
ARIES knowledge base at any one time. That is, the mapping from the internal represen-
tation to the abstraction underlying the presentation may be ambiguous. Objects in the
internal representation might map into the underlying abstraction in more than one pos-
sible way, and information that could determine which meapping; to use is not yet present
in the underlying knowledge base. In such cases, information must be added, either to
the underlying representation or to the resulting abstraction, in order to complete the
presentation.

One cause for this difficulty is that the ARIES Metamodel permits analysts to delay com-
mitment as to what category a knowledge base object belongs to. An analyst can name
a concept, e.g., flight, without committing to whether it is a type or an event or some
other construct. This poses problems for notations that assume that constructs belong to
specific categories.

Two methods are employed for handling such underspecified constructs, depending upon
the particular presentation being employed. One method is simply to omit from the
presentation those objects that are not known definitely to be viewable via a presentation.
This method is used in the type taxonomy presentation: objects that are not declared to
be type declarations are not viewable via this presentation. The other method is to assign
the knowledge base objects by default to specific categories for the purpose of creating the
presentation. For example, in the Reusable Gist presentation underspecified constructs are
presented by default as instances. The choice of which method to employ depends upon
whether the presentation is intended to present all components of a given folder, or only
selected components of a folder.

A related problem arises when it is not possible to determine automatically how to present
information in a presentation, when that information was not entered via a presentation
in the first place. A case in point is the state transition diagram presentation. State
transition diagrams are used to show how some object in a system, or the system itself,
alternates among a finite set of states. For example, a radar track in an air traffic control
system may alternate among various statuses, such as normal, dropped, coasting, etc.

45

In order to make effective use of a state transition diagram in ARIES, it was necessary
to determine how to present arbitrary models encoded in the ARIES Metamodel as state
transition diagrams. Nilary, unary, and binary relations are potentially viewable as states,
under the following conditions. Nilary relations may be interpreted as states of the system;
for example, a nilary relation called operational() might be used to indicate whether the
system being specified is the operational state. Unary relations may indicate states in two
different ways. They may be taken to indicate that the parameter of the relation is in a
given state, e.g., enabled-handoff(track) was used in the scenario in Chapter 2 to represent
the state of a track being enabled for handoff, as was shown in Figure 2.10. Alternatively,
if the parameter may take one of a finite number of values, it may be that the values are
to be interpreted as states of the system. Thus, operational-status(status) may be used to
describe the operational states of the system, provided that status can take on one of a
finite number of values, e.g., operational, training, maintenance, etc. Whenever a binary
relation has one parameter that can take on one of a finite number of values, the parameter
with a finite number of values may be taken to indicate states of the other parameter. Thus
the relation track-status(track, status) may be taken to indicate states of tracks provided
that status can take on one of a finite number of values.

The above rules only indicate what relations might be considered states; they do not
indicate what relations should be viewed as states. Suppose, for example, that a model
of an air traffic control system contains a relation controlling-position(aircraft, controller-
position) associating each aircraft with the controller console (a.k.a. controller position)
controlling that aircraft. There is a finite number of such controlling positions; does that
mean that it is meaningful to treat controller positions as indicating states of the aircraft?
Ultimately, this depends upon the point of view of the analyst. The analyst may consider
the controller position to be a significant indicator of the state of the aircraft, or may
view all controller positions as alike, in which case the choice of controller position is not
significant at all.

Heuristics can be articulated for identifying relations that are likely to be viewed as states.
However, such heuristics are fallible if the specification is incomplete. For example, if an
incomplete specification makes no distinction among the capabilities of different controller
positions, this may be evidence that controller positions do not signify states, or it may
be evidence that the characteristics of different controller positions have not been fully
spelled out.

Instead of using heuristics to guess what relations are likely to represent states, ARIES was
designed with the presumption that it is up to the analyst to indicate what is a state and
what is not. Analysts are given the option of indicating that particular relations signify
states, in a particular state transition diagram. Relations signifying states are viewed
as a subclass of the more general category of relations. Thus the problem of presenting
a model as a state transition diagram becomes similar to the problems described earlier

46

in this section of constructing a presentation when the classification of the objects being
presented is underspecified. As is the case with diagrams such as type taxonomy diagrams,
relations are not taken to represent states unless an analyst explicitly indicates that they
should be viewed as states.

3.5.2 Mapping via transformation

Another approach to mapping narrow notations onto the underlying representation is the
use of transformations. Transformations are used to translate the internal representation
into external notations, and to translate external notations into the internal representation.
This approach is used to map textual formalisms, including Reusable Gist, Refine, and
Loom, onto the ARIES Metamodel.

Some of these transformation processes are mediated by intermediate abstractions, as is
the case for the diagrammatic representations described earlier. This is the approach used
to generate Refine from the ARIES Metamodel. Refine does not support the use of arbitrary
relations for constructing models; instead, models are constructed out of sets and maps.
Instead of using unary relations, for example, one instead defines maps whose range is the
set of boolean values. In order to generate Refine text, ARIES first transforms the ARIES

Metamodel into a subset that can be more readily translated. That includes replacing each
unary relation with a map onto the booleans.

3.6 Integrating textual and relational representations

The relational representation used in the ARIES Metamodel provides a uniformity that
facilitates the development of intelligent tools. Each tool can operate on a subset of the
relations in the knowledge base, or on abstract relations defined in terms of other relations.
Each tool can thus focus on an abstract representation of interest to it.

There are some types of processing for which a relational representation is unsuited. Since
semantic networks may contain cycles, traversal of the network must be done carefully to
avoid infinite loops. Each relation in the metamodel has type and cardinality restrictions.
This must be checked as the knowledge base is updated. This checking can greatly slow
processing when massive updates to the knowledge base are being made, as the case when
folders are being loaded from files on disk. Transformation processes, such as the processes
of translating the ARIES Metamodel into Refine, are most easily expressed as mappings from
textual patterns in one language onto textual patterns in another language. This is not
possible if the internal representation is a collection of relations instead of text. Finally,
saving and restoring sections of the knowledge base to disk files becomes complicated,

47

because it requires translating a nonlinear, cyclical representation into a linear textual
form and back again, reconstructing the same cycles in the piocess.

The ARIES Metamodel has been implemented so that it has both a textual and a relational
form. We use the relational database capabilities provided by the AP5 system [15] as
the uniform means to access all forms of represented knowledge. However, a significant
part of the processing done within ARIES involves grammatical objects (parse trees), for
which we use the POPART language processing system; a sizable subset of the types and
relations in the knowledge base are in fact realized in the form of parse trees. The key to
combining these two facilities is to use POPART's parse trees as implementations of AP5's
relations. This is possible because AP5 allows developers to select arbitrary data structures
to implement relations. Examples of such data structures are trees, hash tables, and linked
lists. The original purpose of this capability was to permit the separation of data structure
selection and algorithm design. In ARIES, this capability is used to allow AP5 to treat parse
trees produced by POPART as implementations of APS's relations.

In order to allow AP5 to treat POPART parse trees as implementations of relations, we had
to define an operation on parse trees corresponding to each of the primitive operations on
relations, asserting a relation, retracting a relation, testing a relation, etc. Once this had
been done, relations implemented as parse tree could then be used just like any other AP5
relation, and tools that operate on the representation need not be concerned with which
relations were realized in POPART and which were not, unless those tools relied specifically
upon POPART capabilities.

The following example illustrates how AP5 and POPART capabilities are integrated to im-
plement the internal representation. Suppose that flight-plan is a ternary relation between
an aircraft, its starting airport, and its designation airport. Then the following expression
in Reusable Gist denotes an expression whose value is any aircraft whose starting airport
is "Los Angeles" and whose destination airport is "New Brunswick":

any aircraft I flight-plan(aircraft, "Los Angeles", "New Brunswick")

Entering this into the ARIES system and representing it using the ARIES Metamodel involves
the following steps. First, the above Reusable Gist expression is parsed using POPART. A
POPART-based language translator is then invoked to translate this expression in another
POPART parse tree in a grammar for ARIES Metamodel objects. In this internal grammar
the expression appears as follows:

(instance-retrieval
:variable (variable :name aircraft :type entity :determiner any :time present)
:predicate (query :concept (reference :name flight-plan :class relation-declaration)

:actuals (reference :name aircraft :class instance-declaration)

48

(reference :name "Los Angeles" :class instance-declaration)
(reference :name "New Brunswick" :class instance-declaration)

Even this small example makes it obvious why the form of the internal representation is
for machine processing, not human perusal!

What it identifies is a reference to some instance (the instance-retrieval form) that will be
bound to a variable named aircraft (the variable form), and which satisfies a particular
predicate involving the flight-plan relation (the query form).

Now let us look at how part of this expression, the query form, is actually represented by
POPART. POPART represents parse trees as nested Lisp lists. The head of the list indicates
the type of nonterminal of the expression, and the tail of the list consists of the fields of
the parse tree node, i.e., its children. Empty fields are stored as NILs. The Lisp expression
for the query is as follows:

(QUERY NIL NIL NIL NIL NIL NIL
((REFERENCE (SYMBOLIC AIRCRAFT)

(DECLARATION-CLASS-FIELD : INSTANCE-DECLARATION)
NIL NIL NIL...)

(GIST-STRING "LosSpaceAngeles")
(GIST-STRING "NewSpaceBrunswick"))

NIL
NIL
NIL
(REFERENCE (SYMBOLIC FLIGHT-PLAN)

(DECLARATION-CLASS-FIELD : CONCEPT-DECLARATION)
NIL NIL NIL...))

Each field in the parse tree always appears in the same position in the list representing
the parse tree node. For example, the form indicating the relation being queried, e.g.,
flight-plan, always appears in the 12th position in the list. POPART automatically assigns
the positions for the various fields.

The first step in defining the AP5 relations in the ARIES Metamodel is a tool which takes
as input the POPART grammar for the internal parse trees and defines a collection of AP5
relations for storing and retrieving fields from the parse trees. One of these automatically
generated relations is called concept-ref; it is a binary relation between query predicates and
reference expressions identifying the relation being queried. The abstract operations on the
relation are implemented as calls to the primitive POPART functions for manipulating these
Lisp lists. For example, in order to assert a tuple of the concept-ref relation, a POPART

49

function is called to update the concept field of the query, which in turn updates the 12th
position of the list.

Once these primitive AP5 relations are defined, other relations may be 1 <gUed in terms
of them. For example, tools rarely need to access reference expressions; ti ey , sually are
instead interested in the knowledge base objects that they refer to. So a mo.e abstract
relation is (concept x y) has been defined, in terms of the following predicate:

(exists (z) (and (concept-ref x z) (refers-to z y)))

refers-to is another primitive relation between reference objects and the definitions that
they name. refers-to is implemented internally via symbol tables which record where all
concepts, instances, folders, etc. are defined in the knowledge base.

This definition of the concept relation is an elementary example of how more abstract
AP5 relations can be defined in terms of other primitive relations. This approach is used
extensively for defining abstraction layers on top of the ARIES Metamodel: an abstract
relation is defined as a predicate over more primitive relations.

The features in ARIES for saving and restoring folders make use of this combined textual
and relational representation in the following way. There is a list of those relations in the
ARIES Metamodel that are not embodied in, or derived from, the textual representation.
When a folder is saved out, two disk files are created. The first file consists of the textual
representation of the folder. The second file consists of a list of AP5 assertions of those
relations which are not represented in the textual form. The save facility traverses the
objects in the folder, looking for objects about which relations in the list have been asserted.
An assertion is written to the file for each such assertion encountered. Each reference to
an object in the knowledge base is replaced with a Lisp form which looks up the desired
object when the form is evaluated. The resulting file of assertions is much smaller and
easier to process than a file of all the relations in the folder would be. When a folder is
restored, ARIES first parses the textual represention file, to create the necessary knowledge
base objects. The assertion file is then read and evaluated, in order to assert the additional
relations on the knowledge base objects that were created.

50

Chapter 4

Presentation

In this chapter we focus on the presentations that users interact with, and show how they
are defined and linked to the underlying knowledge base.

Our fundamental goal is to give the analyst expedient access to a wide variety of require-
ments information. To attain this goal we needed to provide a variety of presentations;
furthermore, in the course of developing ARIES, we needed (and continue to need) to be able
to easily experiment with, and rapidly modify, these presentations. This led us to choose
wherever possible a declarative style of interface definition from which the corresponding
interface can be generated. Alternatively, we could have chosen to hard-wire each interface
individually. Our selection trades some loss of efficiency and restricted ability to fine-tune
presentations in return for rapid construction of modularized interfaces. Presentation ob-
jects are organized into hierarchies and we take advantage of inheritance of properties and
generic approaches to the creation of interface components.

4.1 Construction of presentations

We developed the ARIES presentation system in three stages. First, we established presen-
tation styles-the boxes, arrows, labels, menus, tables, tree diagrams and flow diagrams.
Presentation styles encode the syntactic, organizational features of user interfaces. These
styles are defined independently of the threads which connect the interface to the semantic
information in the knowledge base. Each style captures a particular approach to organizing
and aligning data for display on the screen. Each style has a display approach (size, color,
ornamentation), and aggregate objects have an organizational approach (layout of compo-
nents). Second, we established recognition facilities to handle the response to navigation
requests. A library of reusable navigation buttons was specified, each having a display

51

Presentation Object
graph structure

Layout
Extract Styles

• • •... /L

SPortray Layout
Knowledge Base P

Figure 4.1: Constructing a presentation

name which appears as the label on the button, an advice text string which appears in a
documentation window, and an action which occurs when the analyst selects the button.
Navigation buttons can be mixed and matched for each presentation type. The third stage
established the declarative presentations appropriate for the requirements/specification do-
main. When designing a presentation, the selection of a style does not commit to particular
query for extracting a piece of the knowledge base, to the manner in which individual com-
ponents within the presentation will be portrayed, nor the particular menu options that
will be made available-these are further choices that the designer makes when designing
the presentation itself. These presentations link user interface constructs with semantic
information-items in the knowledge base. Each presentation also contains a list of editing
and navigation options from the library of navigation buttons, and a style (flow diagram,
tree diagram, etc).

We will illustrate how presentations are specified with two examples of presentations that
are part of the ARIES system. The first example is an event-taxonomy presentation. Figure
3.1 presents the event move and its event taxonormy, that is, all its specializations. To create
this display, we apply the event-taxonomy presentation to the event object move in the
knowledge base. The event-taxonomy presentation finds all the specializations of the event,
and displays the event together with its specializations in a tree structure.

The process of constructing a presentation involves two processes, each of which is specified

52

as part of the presentation definition. These processes, illustrated in Figure 4.1, are as
follows.

Extracting the information to be portrayed - This consists of retrieving an ab-
straction of the knowledge base, as described in the previous chapter. The pre-
sentation being defined expects to be given a single object as the starting point from
which to extract information from the knowledge base. In this case, the object is to
be an event-declaration (one of the classes of objects in our knowledge base). The
transitive closure of a binary relation finds further objects to be displayed. In this
case, the relation generalization (linking concepts to their generalizations), in the
reverse direction (because we want to display the specializations of the declaration
provided, rather than its generalizations) defines the desired objects. The resulting
abstract graph is a projection of the entire knowledge base, based on the generaliza-
tion relation. More complex projections are achieved through the definition and use
of the appropriate relations used to induce such projections.

How to portray the extracted information - unbalanced-tree is the particular style
of diagram to be used to portray the event taxonomy information.

The event-declaration objects extracted as described above will be the nodes (a.k.a.
vertices) of the tree, and the branches of the tree will indicate the generalization links
among these nodes. Individual nodes will be displayed as shaded-box, one option for
displaying the nodes of a presentation. The presentation constructor can select from
a library of such "icons" differing in size, shading, geometry, and ornamentation.
Each node is labeled with the name of the object it is portraying, and the folder in
which it resides. Again, the presentation constructor selects the function to generate
this label from a library of such labeling functions.

Thus in summary, the declarative definition of the event taxonomy presentation states the
following information':

* The type of the knowledge base object from which to compute information to be
portrayed-event-declaration

* The binary relation to be followed to find objects to be portrayed-generalization

* The overall style of diagram-unbalanced-tree

* The appearance of nodes in diagram-shaded-box

'For brevity, some details have been omitted, namely directives of whether and where to include it in the
various menus of possible presentations, and directives of how to respond to mouse-gestures associated with
this diagram.

53

* The function to generate node labels-folder-and-relnames, i.e., the particular func-
tion that produces the name of the object and the name of the folder in which it
resides.

As a second illustration, a state-transition diagram, as used in Figure 2.9, is an example of a
more complex presentation, involving more complex layout of the arcs between nodes, and
labeling of those arcs. Its declarative definition must state more information, as follows:

"* The type of the knowledge base object from which to compute information to be
portrayed-std, a unary relation whose values are filled in by the analyst.

"* The relation to be used to find objects to be portrayed as nodes-states

"* The relation to be used to find objects to be portrayed as arcs-transitions

"* The function to compute the node at the start of an arc-start-state

"* The function to compute the node at the end of an arc-end-state

"* The overall style of diagram-flow-diagram

"* The appearance of nodes in diagram-circle

"* The appearance of axes in diagram-arc-labels i.e., labeled arcs connecting to nodes
on the diagram.

"* The function to generate node labels-state-name

"* The function to generate arc labels-transition-name

In summary, to present information in a palatable fashion, we must i) extract a chosen
subset of the knowledge base information to portray, and ii) display that information in
an appropriate form. The key to easy extraction of information to portray is the ability
to define relations on top of th9 underlying knowledge representation, as discussed in
Section 3.5.1. The key to display:ng the extracted information is the use of appropriate
presentation types-diagrams, natural language paraphrases, or formal languages.

The goals for multiple presentation acquisition and review required that we experiment
with a wide variety of modes which slice up the underlying specification representation in
informative ways. In order to populate ARIES with a wide variety of flexible presentations,
we use a declarative style of definition, in which the system builder selects from a number
of provided building blocks to compose the features of the presentation he/she desires.

54

4.2 Presentation implementation

The ARIES user interface builds on the Common Lisp Object System (CLOS), Common Lisp
X (CLX), and the Common Lisp User Interface Environment (CLUE). With CLX, ARIES
runs on host machines supporting the popular X protocol. Also, to a limited extent we
have used X support to investigate multi-user issues involved in multi-display access to a
single underlying knowledge base. By using CLUE, we have built a highly object-oriented
and declarative user interface. This interface serves as a specification and smooths the
transition to other toolkits.

Each presentation is implemented as a CLOS object whose style is described in an asso-
ciated CLUE contact. The presentation description includes a declarative description of
the metamodel relations which are used to establish and link presentation pieces, and the
editing and navigation actions (associated either with a presentation piece or the entire
presentation). Editing actions result in invocations of evolution transformations which
perform the desired changes to the knowledge base.

4.2.1 Implemented presentation styles

As we noted previously, a presentation style captures a particular approach to gathering
data, organizing it, and aligning it for display on the screen. For composite styles, no
commitments are made about the manner in which inferior items will be displayed or the
particular menu options that will be associated with displayed objects.

4.2.1.1 Composite styles

The composite presentation styles which have been implemented for ARIES are as follows:

unbalanced-tree - Tree structures with labeled nodes, e.g., event-taxonomy [Figure
3.1] and decomposition diagrams [Figure 1.3].

flow-diagram - Directed graphs with labeled nodes and edges, e.g., state-transition
diagrams [Figure 2.9] and data flow diagrams.

level-list - Presentations of graphical objects in rows-one row for each level of infor-
mation, e.g., the inheritance structure among folders.

presentation-list - A linear list of objects, e.g., summarizing the contents of a folder
- by listing the names and type signatures of all concepts in that folder.

55

Non-Functional Properties for REQS-FOR-APPROACHING-SECTOR

;0 20.0SE I __ _ __ __

"• _• MH [20.0 SEC

i'_ _ I _ _I _ _ _ _ I _ _1.k~

_ __1_ _ _ _ MILES

scripetions asoiae wihafle;a t exntua ispayo tefoml itpciiato

of the concepts iii a folder [Figure 3.2].

4.2.1.2 Individual Components

The portrayal of individual components--boxes, arrows, menu lines--involves icon display
and content display. Icons have shape, size, color (or gray scale), and ornamentations.
Contents range fromn very simple name labels to complex textual blocks that are generated
through a translation process. Several of the presentations have formal language as their
content. Translation between the system's internal representation and each of these formal
languages is the crucial capability in creating and using such presentations. The textual
style (as used in the presentationi-list and pages styles) can be in one of the following
sub-languages:

______________ 1 _____________ I _____________ I______________ __5__________

English - Concepts of our internal specification language can be described in natural
language by our paraphraser tool, as is shown in Figure 2.5. Paraphrasing offers
an easy-to-understand portrayal of specification information to those not conver-
sant with our formalisms. This is for output only-the system does not do natural
language understanding.

Reusable Gist - The behavior-oriented aspects of the specification are represented in
Reusable Gist, a version of our in-house specification language Gist that we have used
for many years [7]. The system automatically translates its internal representation
of specifications into an external Gist form which is much more palatable to human
comprehension. This translation goes in both directions-it is also possible to enter
or modify requirements and specification information by providing or modifying the
external form of Reusable Gist text, which the system parses and translates2 into its
internal representation.

Refine - Our work on software requirements and specifications is part of the larger IKBSA
project tackling the entire software development process. The formal specifications
that emerge from our system will be input to the design activity leading to executable
prototypes, and ultimately final implementations. A different group has studied the
algorithmic design and coding phases of this development life cycle, and they expect
to work with specifications expressed in Refine, a very-high-level language. Thus
we have built a translator that outputs specifications in Refine syntax. Of course,
there are concepts in our specification language that do not have a direct counter-
part in Refine, so it is part of our specification development process to transform
specifications using such constructs into specifications that make no such use, prior
to production of Refine output.

Loom - we have a translator that, given specification knowledge expressed in Loom (a
commonly used knowledge representation language), is able to produce the equivalent
in our internal language. Currently this is a only a one-way translation into our
representation. We have not constructed the translator to go in the reverse direction,
although in principle it should be a straightforward task to do so.

We use Wile's POPART system as the basis for defining translation. POPART, when provided
with a BNF-like description of two languages, produces (among other things) a capability
for easy definition of translators between those languages (see (79, 78] for details). We use
these capabilities extensively.

As a specific illustration of translation, consider again the Reusable Gist expression dis-
cussed in Section 3.6:

2 To define this and other translators, we provide formal definitions of the grammars of our languages to

Wile's POPART system, which in return provides us with powerful and convenient language manipulation
tools from which we can readily build the translators-see [791 for details of POPART.

57

any aircraft I flight-plan(aircraft, "Los Angeles", "New Brunswick")

Recall that the internal textual representation of this expression is as follows:

(instance-retrieval
:variable (variable :na.ie aircraft :type entity :determiner any :time present)
:predicate (query :concept (reference :name flight-plan :class relation-declaration)

:actuals (reference :name aircraft :class instance-declaration)
(reference :name "Los Angeles" :class instance-declaration)
(reference :name "New Brunswick" :class instance-declaration)

Translation of such "instance-retrievals" from the internal form to RG is specified by the
following rule:

(instance-retrieval :variable !variable#v :predicate !predicate#p)

any !ever-role#v I !predicate#p

This translation rule consists of a pattern in the grammar of the internal language, the
symbol ==>, and a pattern in the grammar of the RG language; the ! symbol indicates a
pattern variable following (e.g., !variable#v is a pattern variable which can be bound to a
parse-tree of the type variable; the suffix, #v, is the means to give this variable the name
v). To translate an instance-retrieval, it is matched against the above rule's first pattern; if
successful, matching instantiates the pattern variables with the corresponding portions of
parse tree in the input expression. The result returned by translation is the second pattern
where its instances of pattern variables get their values by recursively translating the values
bound to the variables of the same name in the first pattern. Figure 4.3 illustrates this
translation process in operation on our example. The expression to be translated, (instance-
retrieval (variable name aircraft ...) (query concept ...)), is matched against the first pattern
of the translation rule. This establishes bindings for !variable#v and !predicate#p, namely
(variable name aircraft ...) and (query concept ...) respectively. The result of translation
is obtained by instantiating the translation rule's second pattern with the variable values
computed by recursive translation (i.e., (variable :name aircraft ...) is translated to aircraft,
and (query :concept (reference :name flight-plan ...) :actuals ...) to flight-plan(...)). This
recursive translation process is a feature of POPART'S mechanisms, and saves us the tedium
of explicitly coding the recursive translation of substructures in many of the translation
rules.

Our complete translator from the internal representation to RG consists of a set of such
rules, one for each type of construct in the grammar of the internal representation. We

58

(instance-retrieval

:variable (variable :name aircraft :type entity :determiner any time present)

:predicate, (query,:concept (reference :name flight-plan :class relation-declaration)
:actuals (reference :name aircraft :class instance-declaration)

(reference :name "Los A." :class instance-declaration)
L ' (reference :name "New B." :class instance-declaration)))

Internal
T Representation

T Match - establishing bindings for variables
r
a Vt

nf (instance-retrieval :variable !variable#v :predicate Lpredicate#p,)
$
l Recursively translate ,, ." T ranslation

t any !ever-role#vI !predi2ate#p

S Instantiate "

Reusable Gistany aircraft flight--jpanaircr;af. "Los A.", "NeewB. R

Figure 4.3: Translation from the internal representation to RG

59

have similar rule sets to do translation in the reverse direction (i.e., from RG to the in-
ternal representation), and the other (formal) language-to-language translations of ARIES
(namely, from Loom into the internal representation, and from the internal representation
into Refine).

In defining the translation rules for producing RG, we invested some extra effort to cause
them to use RG's notational abbreviations where possible. By notational abbreviations
we mean the syntactic shorthands that permit a more concise expressive form for certain
forms of expression, for example, writing addition as in infix expression rather than as a
retrieval from a ternary relation ('3 + 4' rather than 'any integer I plus(3,4,integer)'). RG
offers a number of such abbreviations, whereas the internal representation eschews these
in favor of a more uniform but verbose style. A naive translation of the internal form that
did nothing in this direction would, we conjecture, produce unsatisfactory output. We
feel that our policy has the advantage of ensuring that RG displayed by the system always
makes consistent use of these abbreviations.

We have opted for canonical layouts and translations to provide uniformity and to post-
pone dealing with some of the engineering issues involved in mixing user-initiated formats
with automatically generated formats. If the analyst manually rearranges the layout of
a diagram, ARIES maintains data structures which enable it to present the revised lay-
out until modifications to the knowledge base dictate that the presentation be updated.
At this point, the user-initiated positions are discarded. A similar capability exists for
translations. To preserve the exact form of PG as entered by the analyst would require
retention of information that we currently discard (our internal representation does not
retain the form of the RG from which it was translated). We have essentially chosen to
discard such information; this is obviously a compromise, insofar as we may imagine a
more sophisticated system that retained such stylistic choices, but its realization would
further complicate the representations3 .

4.2.2 Implemented presentations

Using these presentation styles we have developed 31 presentation types for the ARIES
system. A presentation type is defined by a presentation style, a specification of the
presentation parts, and a specification of the navigation actions that are appropriate.
Figure 4.4 shows the declarative description for one of these presentations. sans serif font
shows the actual code. italic font shows comments that we have added for this report.

Observe that this declaration provides the information necessary to determine both the
information to be extracted from the knowledge base, and how to portray it on the screen.

3 Furthermore, an ideal system might go so far as to recognize the analyst's "style" and be able to present
new or changed material in that style!

60

(defpresentation EVENT-TAXONOMY ()
:name "Event Taxonomy" name of presentation as will appear in menus
:concept-description "Showing the specializations of an event." menu documentation
:top-level? T directs that this appears in top-level menu of presentations

:grouping 'terminology subgroup of menu in which this appears
:method 'projection currently commentary, i.e., ignored by the system

:mode 'graphical currently commentary
:implementation-model 'unbalanced-tree style of this presentation
:do-type 'event-declaration type of "seed" object being presented
:po-editors (cons 'up-a-level (top-level-actions)) edit actions available on presentation;

as well as all the (standard) top level actions, also includes the action to move
up a level

:do/po-interface '(,(make-poid
:po-name :vertex defines nodes (a.k.a. vertices) of this presentation; more complex

presentations, e.g., state transition diagrams, also define generation and portrayal of arcs
:po-type '(shadowed-circle) choice of how objects (nodes) will be drawn
:do-type 'event-declaration type of object being portrayed
:navigation (standard-tree-navigators) navigations available on each node
:do-getter 'generalization link to follow in knowledge base to extract objects (nodes)
:direction 'reverse direction to follow aforementioned link
:do-namer #'folder-and-relnames))) function that generates labels for nodes

Figure 4.4: Definition of Event Taxonomy presentation

61

Examples of the former class of information are the declarations that generalization be

used, and used in the reverse direction (because we want the specializations of the "seed"

event), as the relation whose transitive closure is computed to determine the information
to be extracted. Examples of the latter are the declarations that select the presentation
style (unbalanced-tree), the choice of how to draw individual nodes 9shadowed-circle), and
the choice of what navigation menu options are available in response to clicking the middle
mouse button on any of the portrayed objects.

The following is a complete list of presentations currently supported in the ARIES system.
The presentation types are catalogued as presentations of terminology, folders, behavior,
summaries, decomposition, analysis, and formal description. Some of presentations pertain

to aspects of ARIES representation and functionality that will be described in later chapters.

4.2.2.1 Presentations of Terminology

Several presentations emphasize the terminology used in specification.

Relation Participation diagrams show all the relations that an object participates in. For
example, a diagram might show all the relations which define or restrict radar contacts.
This presentation helps analysts determine if all relations on an object type have been

defined or if there can be collapsing of relations which represent unnecessary nuances. The
style of this presentation is flow-diagram.

Event Participation diagrams show the events that an object participates in. This presen-
tation is intended to be used in much the same way as the relation paiticipation diagram.

The style of this presentation is flow-diagram.

CL OS Taxonomy diagrams show a taxonomy of Common Lisp Object System classes. For
example, one might be interested in seeing the class inheritance for all implementations,
the top class of presentation types. The style of this presentation is unbalanced-tree.

The Object Type Taxonomy shows the specializations of an object type. This presentation
displays all the type declarations which specialize a given type declaration. It can be
particularly helpful to analysts who wish to retrieve the description of an object identifiable

only as a specialization of some general concept. In addition, analysts would use this
presentation when specifying special terminology. From any of the taxonomy diagrams

analysts can access "upper" level terminology. An "up-a-level" button brings up a menu
of all generalizations of the displayed concept. Selection of the generalization results in the

creation of an object type taxonomy showing specializations from that upper level. The

style of this presentation is unbalanced-tree.

Relation Taxonomy presentations show the specializations of a relation. The intended use

62

of these presentations is similar to the use of object type taxonomies. The style of this
presentation is unbalanced-tree.

Event Taxonomy presentations show the specializations of an event. The intended use of
these presentations would also be similar to the use of object type taxonomies. The style
of this presentation is unbalanced-tree.

Folder Type Hierarchy diagrams showing all the types defined in a folder, and their special-
ization/generalization hierarchy as lexically defined in the folder. Unlike the object type
taxonomy, this presentation does not cross folder boundaries. However, it may present
several disconnected trees. These two presentations should be viewed as complementary
projections on the underlying collection of type declarations. The style of this presentation
is flow-diagram.

4.2.2.2 Folder Presentations

Several presentations display the interaction among folders.

Folders and Reusable Folders show the use inheritance structure of all folders or all reusable
folders. This presentation can be used to examine the current folder segmentation, the
use structure of the current context within the broader picture of all the folders. (Folder
structuring mechanisms will be described further in the next chapter.) It might also be
used to help find a specific folder to be added to a use list. In all the folder presentations,
special icons help the analyst identify reusable folders, the current context, users of the
current context, and folders used by the current context. The style of this presentation is
level-list. Generally these presentations contain an overwhelming amount of information,
however, they are the only presentations which attempt to display (in icon form) the entire
knowledge base.

The Using Folders presentation shows the transitive use of a specified folder. All folders
which trace their heritage to a given folder are displayed. This presentation helps analysts
find reusable folders which might contain useful descriptions to be added to a specification.
The style of this presentation is coerce-dag->unbalanced-tree.

Folder Inheritance is a more restricted view of the folder world showing only those folders
which are used by or use a single specified folder. The style of this presentation is level-list.

Folder Specializations displays specialization hierarchies for folders, as described in Chapter
5.

63

Process Model for ARIES

is __-_ Vin- •---uimo-oqI Altemative-Viev 9 Oit rs

Figure 4.5: ARIES Process Model presentation

4.2.2.3 Presentations of behavior

Some p)resentations call attention to restrictions on behavior.

The Aries Process Model presentation, illustrated in Figure 4.5 is a special presentation of
the intended use of AllIES itself. Attached to most process nodes is an activity that ARIES

initiates within that process. For example, opening the "check-dynamic-behavior" node
))rings tip the scenario creation environment needed for asking validation questions and
running a simulation of a specialized specification (described in Chapter 6. Attached to
all process nodes arc e' camples which can be followed in instructional mode. In this mode,
analysts are guided through typical uses of the ARIES system, as described in Section 4.3.

The Behavior List plresentation is used to display summary information about the restric-
tions on behavior--the events and invariants-of a specification. An analyst might use
this presentation to get a quick idea about what behavior had been specified.

State Transition Diagram presentations show a collection of states and the transitions
(events) which move the system described from one state to another. This presenta-
tion-helps analysts to specify behavior and ask validation questions. A diagram can be

64

associated with a particular b)inary relation that has an enumerable parameter, e.g., a
"track-status" relatioin with a "status" parameter holding all the possible states of an air-
craft with respect to a tracking subsystem. Diagrams can also be associated with a folder
when the analyst wishes to extract a particular collection of events (displayed as transi-
tions) to achieve validation, review, or acquisition goals. The style of this presentation is
flow-diagram.

Information Flow Diagram presentations show the information flow between a collection
of events. This presentation can be useful for uncovering missing pieces of a specification
(e.g, a fact which is accessed by one event but never asserted by any events). Fact access
and modification includes more narrowly defined data flow as a subset. Unfortunately,
information flow presentations often display an overwhelming amount of detail about a
specification. We designed the consumers, producers, and single event interface presen-
tations to provi(l(d more restricted views. Importantly, this presentation points out the
need for abstractions whi(ch fall between functional/data flow modeling and event/fact
flow modeling. Tlic stylc of this presentation is flow-diagram.

Consumers p)resent.atioins show all the events which consume information by accessing a
declaration. This 1)resentation can be more informative than information flow. It can be
used to check on or add to the events which are to consume information. The style of this

presentation is flow-diagram.

Producers presentations show all the events which produce information by modifying a
declaration. Its intended use is similar to that of the consumers presentation. The style of
this presentation is flow-diagram.

Single Event Interface presentations show the information accessed and modified by a single
event. They can be viewed as the counterpart to context diagrams used for showing system
inputs and outputs. Like consumer and producer presentations, single event interface
presentations cut out a more restricted focussed picture of the event world than information
flow diagrams. The style of this presentation is flow-diagram.

4.2.2.4 Summary Presentations

Several presentations ,)rovi(le a brief summary of some specification object.

The Paraphrase presentation shows a natural language paraphrase of a specification frag-
ment. The paraphrase can help analysts understand the meaning of a specification frag-
ment. In order to validate acquired information, analysts can benefit from different pre-
sentations, such as natural language. Figure 2.5 shows the English paraphrase of the
specification of the handoff-init event.

65

The D,,cumentation String presentation is a special presentation which is visible whenever
the iliouse points to a region of the screen which displays a knowledgebase object. It
will display textual informal (not Reusable Gist) information associated with the knowl-
edgebase object. This information could be a concept-description, ARIES-documentation,
notes-and-warnings, or informal text.

The Describe Object r1resentation displays the ARIES-documentation associated with a par-
ticular object.

The Browser is a presentation which shows the lexical contents of a folder or specification
object. It is an interface to a number of low-level menu-like descriptions of the specification.
Analysts may find it useful for quickly navigating around a specification at the level of
individual specification fragments.

The Summary presentation shows a list of the exported concepts lexically defined in a
folder. The style of this 1)resentation is presentation-list.

4.2.2.5 Decomposition

The intent of these presentations is to show decomposition of systems and events.

Event Decompositionl diagrams show an internal decomposition of an event into its subevents-
the events that are steps of the entire event. This presentation could be used for sketching
out the various pieces that make up the body of an event. The style of this presentation
is unl)alanced- tree.

Functional Decomposition shows the decomposition of a function into its subfunctions. The
style of this presentation is unbalanced-tree.

Physical Decomposition shows the decomposition of a system into its physical subsystems.
The style of this presentat-imn is uinba la nced-tree.

Part Decomposition shows the decomi)osition of a system into undifferentiated (could be
functional or physical) subsystems. The style of this presentation is unbalanced-tree.

4.2.2.6 Analysis Presentations

Some p1resentat aiMms are particularly helpfu-il for analysis of specifications.

Ref•rence Tree presentations shov the transitive closure of referenced declarations given
an initial declaration. They are useful for declaring the compilation mode for concepts
and for identifying l)laces where a scenario can be pruned to obtain a more informative

66

simulation. The style of this presentation is coerce-dag->unbalanced-tree.

Nonfunctional Properties show the nonfunctional requirements for a collection of system
components. Each requirement is shown with an indication (using colors) of its type of
support-default, supposition, belief, constant, inherited, or derived through a constrain-
ing formula. The style of this presentation is matrix. The rows of the matrix are type
declarations or event declarations-components to which one can attach nonfunctional
properties. The coluhms of the matrix are relation declarations which have been marked
as nonfunctional-properties associated with a particular folder. For example, processing-
time and response-time nonfunctional requirements would be associated with a folder of
real time concerns. Accuracy requirements would be associated with a folder concerned
with measurement events.

4.2.2.7 Formal Presentations

ARIES provides two presentations of Reusable Gist.

A Formal Specification. presentation shows the Reusable Gist formal specification of all the
components lexically definled in a folder. The style of this presentation is pages.

The Reusable Gist presentation shows the Reusable Gist description of a single specifica-
tion fragment. This description is identical to the description that appears in the formal
specification presentation of the fragment's home folder.

4.3 Operational and instructional modes

In the normal operational mode, the ARIES interface permits the analyst to perform any
operation or invoke any function at any time. Presentations and their associated function-
ality provide focus to the analyst's activities, but the analyst is always free to switch to
a different presentation, in which different objects are visible and different operations are
applicable to them. The underlying reasoning and evolution capabilities are independent
of representation, and can be invoked a.t any time.

This design gives the ARIES user great flexibility, and demonstrates generality of the tech-
nologies employed. However, this flexibility is desirable only if the analyst is familiar
enough with the system, and with the problem domain, to be able to take advantage of it.
Inexperienced users require much more guidance and advice.

ARIES has taken some initial steps toward supporting users with different levels of sophis-
tication. First of all, the Process Model presentation described in Section 4.2.2.3 helps an

67

analyst keel) track of what overall task is currently being performed, and what subsequent
tasks are possible. AllIES canl provide limited advice regarding actions that one is likely to
perform in each state of the process.

The system can be run in a. normal operational mode or an instructional mode. In instruc-
tional mode, the system helps the user work through examples of ARIES in use. There are
currently 13 such examples in the system.

Unlike some computer-based tools with instructional modes what require the user to follow
the indicated path through the script, ARIES allows the user to deviate from the example
at will. It makes use of a rudimentary plan recognition capability, in which each action
performed by the user is matched against a description of the next step in the example.
The user. is free to perform any action matching the description, affording a degree of
flexibility. Furthermore, the user is free to deviate from the script at any time and come
back to it at. a later point. Depending upon the level of guidance selected, ARIES can
simply ignore such detours, or issue warnings when they occur. In any event, a display
of the steps in the script is updated as the user progresses, showing the current point in
the script, as in Figure 4.6. The display shows a three-level hierarchy of structure in the
examples: tasks to be performed (e.g., "Perform a complex evolution), actions to complete
as part of the task (e.g., "Find transformation"), and individual items buttons to mouse
on or text to type (e.g., "'nodify-spec"). When the mouse is placed over one of the action
descriptions, a. detailed description of each input required appears in the documentation
at the bottom of the ARIES Manager window. The left column of the display indicates the
analyst's progress through the example: "C" indicates that the action has been completed,
and an arrow indicates the action that should be completed next.

4.4 Related work

Some CASE tools, such as STATEMATE, support multiple notations. Where ARIES differs
from these systems is that in CASE tools the notations are required to convey distinct
information, so that edits to one diagram do not result in changes to other diagrams. In
ARIES the information conveyed in different presentations may overlap. For example, the
Reusable Gist presentation describes many aspects of a system that can also be presented
by narrower presentations such as information flow diagrams or state transition diagrams.
In this respect ARIES is similar to the the PECAN system, which allows programs to see
textual and flow-chart views of programs at the same time [66]. Where ARIES differs is
that it allows analysts to edit most of these presentations, and edits to one presentation
can result in changes to other presentations. In PECAN only the textual presentation can
be edited, and other views are read-only. ARIES makes use of a general mechanism for
mapping presentations onto a common underlying representation. This scheme makes

68

ro INSTRUCTION-MENU

Quit

Tune Error Handling

Perform a complex evolution
C:1) Review current definition -> init-handoff> present> paraphrase
=>2) Find transformation -> modify-spec> completion> define-and-check-enabling-state> define-and-check-enabling-sta

3) Present transformation -> present> describe-object
4) Find transform another way -> modify> define-and-check-enabling-state
5) Fill in enabled state name -> name-of-enabled-state
6) Fill in disabled state name -> name-of-disabled-state
7) Apply the transformation -> done
8) Reset presentation -> reset

Review result of evolution
D) See change to INIT-HAtIDOFF -> init-handoff> present> paraphrase
2) See change to AUTOMATIC-INIT-HANDOFF -> automatic-init-handoff> present> paraphrase
3) Examine new state changes -> presentation> state-transition-diagram> revisit std

Figure 4.6: An instructional script

69

it possible to provide multiple editable notations, and map changes onto the underlying
representation as well as onto other notations.

The PRISMA project [61] is also a system for assisting in the construction of specifications
from requirements. Its main characteristics are:

" Multiple views of the (emerging) specification, where the views that they have ex-
plored are data-flow diagrams, entity relationship models, and petri nets.

"* Each view is represented in the same underlying semantic-net formalism, yet repre-
sents a different aspect of the specification. This representation is suited to graphical
presentation and admits to certain consistency and completeness heuristics whose se-
mantics depend on the view being represented (e.g., the lack of an 'input' link in this
representation in a data-flow diagram indicates a process lacking inputs; in an entity-
relationship diagram it indicates an entity with no attributes; in a petri net diagram
it indicates an event with no preconditions (prior events)).

" Heuristics exist to compare the different views of (different aspects of) the same
specification, and aid in construction of new views or support checking for partial
consistency between views.

" Errors detected by the above heuristics are added to an agenda of tasks requiring
resolution, along with advice on how to accomplish that resolution.

" A paraphraser produces natural-language presentations of many of the kinds of infor-
mation manipulated by the system (e.g., of the requirements information represented
in the different views, of the agenda of tasks and advice for performing those tasks,
and of the results of the heuristics that detect uses of requirements freedoms).

There is striking similarity between their approach and ours-the use of multiple views
and their presentations, and an underlying semantic-net formalism. They have clearly
thought about and developed heuristics to operate on or between views, an aspect that we
have only recently begun to address. Conversely, we have provided much more support for
evolution.

70

Chapter 5

Cooperative Requirements Analysis
and Reuse

There are a number of impediments to smooth cooperation between huri in and machine in
requirements specification work. The system's knowledge base is bound to be incomplete.
The analyst's knowledge and understanding is also likely to be incomplete, since otherwise
there would be no need to analyze requirements. Thus an assistant may be unable to
interpret requirements statements generated by the analyst, and vice versa. Communica-
tion between machine and analyst can fail because each is unfamiliar with the names that
the other gives to concepts. For example, a common term such as "direction" can mean
different things. It may be relative to geographic north, magnetic north, or the current ori-
entation of the object. Without further advice, the macline may misinterpret the analyst's
statements, and vice versa. If the assistant proceeds to draw erroneous inferences due to
the misinterpretations, the accuracy of the requirements description becomes increasingly
suspect.

The problems of misinterpretation and miscommunication also arise when grou - of ana-
lysts cooperate in analyzing requirements of complex problems. In such situations, lifferent
analysts inevitably focus on different parts of the problem. In so doing, they may develop
different ways of referring to domain concepts, or make different assumptions about them.
They may choose to model the domain in different ways, and make different simplifying
assumptions. We contend that these differences in point of view between analysts are a
necessary part of the business of requirements analysis. An analysis team can be expected
to continually go through a cycle of agreeing on shared results and working independently
to refine concepts and explore new territory. Rather than prevent modeling discrepancies
between analysts, we wish to develop tools that help to make such discrepancies explicit,
and gradually eliminate them during problem analysis.

71

This chapter describes the knowledge base structuring mechanisms that alleviate commu-
nication problems during requirements analysis. By explicitly controlling the degree of
sharing between different parts cf the knowledge base, we lessen the risk of misinterpre-
tation. Reuse of requirements knowledge is facilitated, without inadvertently introducing
knowledge which is in conflict with each analyst's conception of the problem.

5.1 Folders and workspaces

The primary units of knowledge base organization in ARIES are workspaces and folders.
Each analyst interacting with ARIES has one or more private workspaces-collections of
system descriptions that are to be interpreted in a common context. Whenever an analyst
is working on a problem. it is in the context of a particular workspace. Each workspace
consists of a set of folders, each of which contains formal and/or informal definitions of
interrelated system terminology or behavior. Analysts can use folders to organize their
work in such a way that they share some work and keep some work separate.

The folders can be used to maintain alternative models of concepts, which analysts may
choose from when constructing a system description. The move events shown in Figure
3.1 are an example of this. This figure is repeated in Figure 5.1 for ease of reference.
These concepts are actually taken from several folders. The names of the folders appear at
the bottom of the boxes, and unfortunately are partially obscured in the diagram. Some,
such as generic-actions, are not specific to any domain or problem; some, such as land, are
specific to aviation. Furthermore, different models are defined within the aviation domain:
the maneuver folder models aircraft as moving in continuous trajectories over time, and
the basic-descriptive-aircraft-move folder models motion as consisting of straight-line motion
from source to destination. Each model is suitable for different purposes. An analyst selects
folders by building a new folder that uses the folders containing terminology he or she is
interested in. Capabilities are provided for locating concepts in related folders, and linking
them to the current folder.

The ARIES library of domain and requirements knowledge is also subdivided into folders.
The ARIES knowledge base currently contains 122 folders comprising over 1500 concepts.
These concepts include precise definitions of concepts, as well as excerpts from published
informal documents describing requirements for particular domains, e.g., air traffic control
manuals. As an illustration, Figure 5.2 shows the contents of a folder containing some
definitions related to aircraft flight.

First note that the folder contains an aggregation of interconnected terminology which
analysts access by reference to the folder. Note also that this aircraft folder contains ref, r-
ences to concepts (e.g., vehicle, compass-point, symbol) which are not central to aircraft

72

Event Taxonomy for MOVE
GESTURES

IMODIFY

JOIN pm'

SPLIT

DESTROY __

DEOTE

PROMO~TE

SPL ICE

INSERT

UPDTE Parameters Itp-A-L.,ve1 Fid-TensiaOloqy A Alternative-View e Wuit reset

Figure 5.1: Taxonomy of kinds of motion

folder AIRCRAFT
exports {

type aircraft specialization-of vehicle
type aircraft- heading

speciaulization-of compass-point;
relation in-flight.(aircraft);
defined type flying-aircraft

specialization-of aircraft
requires in-flight(flying-aircraft)

unique relation aircraft-id(aircraft, symbol)
}
uses { VEHICLE;NAVIGATIONAL-DIRECTION;PREDEFINED }

Figure 5.2: The aircraft folder

73

description alone, but are defined in other folders-namely, vehicle, navigational-direction,
and predefined. By declaring that these folders are "used" by aircraft, all of the terminology
that they contain becomes part of the requirement.

Folders and workspaces have analogues in other approaches to software engineering and
knowledge engineering. Workspaces also appear in Terveen's interface to CYc, [76], and
serve a similar function, to separate the work of each developer from the work of others. To
a first approximation, folders are similar to the package system of Common Lisp [741: they
make it possible to build requirement descriptions out of existing requirement fragments
ubile avoiding name collisions. Like packages, they contain internal and external symbols,
and import from other folders. However, packages in Lisp are usually defined for specific
systems, and are difficult to combine in a coherent fashion. Folders, on the other hand,
are designed to support integration. Another analogue to folders are the specification
encapsulation mechanisms of specification languages such as Larch [49], or the "theories"
developed by Smith for the KIDS system [70]. As in this other work, we are interested in
being able to combine folders in semantically coherent ways, and define mappings between
folders. The major differences are that folders can contain both formal and informal
information, and are used to organize all knowledge of interest, instead of just abstract
data types. Folders in general are thus simply a grouping mechanism, although certain
classes of folders have interesting semantic properties. The closest analogue to folders is
the notion of "microtheory" in CYC [32]. Both can be used as a general mechanism for
organizing knowledge bases, and make it possible to support multiple models of concepts.
We have addressed some concerns that have not been addressed in the CYC work, namely
how to organize folders to support incremental formalization of knowledge.

Analysts using folders may either perform fine-grained (i.e., individual term) or course-
grained (i.e., entire folder) retrieval of reusable requirements. Retrieval of reusable re-
quirements is entirely analyst-directed but is supported in a manner similar to spreading-
activation approaches [57, 48, 16]. Analysts can select components which populate any of
the numerous taxonomic, entity-relationship, or simple browsing presentations of ARIES.
We have emphasized techniques that operate on hierarchies, and techniques that focus
search according to the task and problem domain of interest to the analyst. Our approach
does not rely on annotating components with keywords (as in Standish's work [72]), or
facet values (as in Prieto-Diaz and Freeman's work [64]).

5.2 Folder structuring

Folders are organized in a use network. To reuse information from a specified folder, a
developer simply asserts that the currently open folder "uses" the specified folder. In a
typidal requirement development, we would expect to find a large number of intercon-

74

usee

behaviorcaulry

Figure 5.3: Typical relationship among folders

nected folders. Figure 15.3 illustrates the nature of the information typically found in such
a network. Systems use the descriptions of functional areas. Functional areas make use of
a project-wide shared vocabulary. The project vocabulary uses vocabulary specific to the

air traffic control domain, but not specific to any particular project; the domain-specific
vocabulary is defined in terms of domain-independent vocabulary that spans across do-
mains. Thus aircraft-tracking uses generic-tracking which requires that locations of objects
be known within some tolerance.

A key design issue for the folder framework was whether to make folder use transitive or
not. Our approach has been to allow folder consumers the opportunity to individually
select folders to use. If an analyst agrees with the model in one folder, it does not follow
that he understands the models of all the concepts in the used folders. There are many
reasons why this may be so, but the most common is that domain-specific terminology
is defined in terms of domain-independent terminology unfamiliar to most analysts. For
example, the concept "*flight-plan"~ in air traffic control is defined in terms of the domain-
independent concepts "verbal-process" and "artificial-object". "Artificial-object" is part
of a generic vocabulary for designed systems, and "'verbal-process" is part of the domain-
independent ontology for natural language semantics developed by the PENMAN project
[8]. Such notions, because they apply across domains, are very abstract and unfamiliar
to air traffic control experts. Analysts responsible for codifying domain knowledge will
need to understand such domain-independent terminology; individual system analysts will

75

usually not need to worry about it.

Use structure in itself provides heuristic evidence for folder inclusion: if an analyst mentions
a concept that is not present in one of the folders being used, but is present in a folder that
one of them use, then it is plausible that that is the concept being referred to. However,
it may still be the case that the notion that the analyst has in mind is some variant on
what appears in that particular folder. So, it is still useful to keep explicit track of which
folders are being used, either explicitly or by inference.

5.3 Reuse techniques

Three further extensions of the folder notion have been developed to support reuse: hier-
archies of multiple models, parameterized folders, and the use of higher-order properties.
These have been combined in ARIES to provide powerful reuse support.

5.3.1 Representation of multiple models

Analysts may selectively incorporate models of concepts into their requirements, as in
the following example. The ARIES knowledge base contains several alternative models for
directions: as compass points (e.g., north, south, east, and west), as the number of degrees
clockwise from magnetic north, or as multiples of ten degrees from magnetic north (used

to mark the direction of runways). Figure 5.4 shows the folders containing these different
models.

The most general folder, called direction, includes those properties common to all models
of direction. Other folders, named-direction, navigational-direction, and aircraft-direction,
define more specific models of direction. These folders are linked in a folder generaliza-
tion hierarchy, shown in Figure 5.5, indicating that the other folders are more specialized
models of the same concepts described in the generic folder. An analyst can select from
among these models when developing a specification. The selection can also be performed
gradually: the analyst may first select the most general, least committed model, and then
replace this with a more specific model once the concerns of the specification are better
understood.

Our work on supporting multiple models is related to the work on requirements viewpoint
resolution [53, 69]. While Liete's emphasis is on the ultimate resolution of discrepancies
we have been more focussed on providing the framework for the management and reuse of
disparate viewpoints.

76

folder DIRECTION exports {
type direction specialization-of ordered-value)

uses {PREDEFINED}
folder NAMED-DIRECTION exports {

type named-direction specialization-of direction;
var east:named-direction;
var north:named-direction;
var south:named-direction;
var west:named-direction}

uses {DIRECTION}
folder NAVIGATIONAL-DIRECTION exports {

type compass-point specialization-of integer specialization-of direction;
type azimuth specialization-of compass-point;
invariant compass-range V (cp : compass-point) 0 < cp A cp _< 360 }

uses {DIRECTION;PREDEFINED}
folder AIRCRAFT-DIRECTION exports {

type runway-orientation specialization-of direction;
invariant runway-range V (ro: runway-orientation) 1 < ro and ro < 36}

uses {DIRECTION; PREDEFINED}

Figure 5.4: Folders containing several models for the "direction" concept

77

Folder Specialization for DIRECTION

MODIFY

JOIN

SPLIT

DESTROY

CREATE

DEMOTE

PROMTE

REMOV

INSERT

UPDA~TE PrmtrSparaeters j KUp-A-Level Find-Terumialogy Alternative-Tiev Glt r0set

Figure 5.5: Specialization hierarchy of direction folders

78

5.3.2 Parameterized specifications

Reuse is facilitated through the use of parameterized specifications, i.e., folders that either
are parameterized themselves, or contain concept definitions that are parameterized. As
explained in Section 3.2.2, parameterized concept definitions contain unbound roles which
must be assigned values in order for the concept to be used in a specification. Similarly,
folders themselves may have roles, and those roles may be unbound. When an analyst
makes use of a parameterized specification, he or she must instantiate a copy of the folder in
which the roles are bound. Such parameterized specifications are an important mechanism
for representing requirements cliches, and are similar to the approach of the Requirements
Apprentice [67].

5.3.3 Reuse through specialization

In ARIES, concepts are organized in specialization hierarchies at the same time that they
are organized into folders. The approach to specialization was described earlier in Section
3.2.1. In comparison to many common knowledge representation systems, ARIES makes
more extensive use of specialization hierarchies; it supports specialization hierarchies for
relations and events as well as types. These extended specialization hierarchies provide
more opportunities for knowledge reuse.

5.3.4 Reuse of higher-order properties

Higher-order operators, as described in Section 3.2.3, define properties that hold for classes
of concepts. These properties can support reuse: if a concept belongs to a higher-order
class, it reuses the attributes that every member of the class exhibits.

An example of a reusable higher-order property is the property of a server satisfying
requests in a first-come-first-served fashion. This property is higher order because it is
a property that can hold for any process that handles and acts on requests, i.e., it is a
property of a particular class of events. First-come-first-served is defined as a temporal
relationship between requests and actions, as follows. Let E be the event that is invoked
in a first-come-first-served fashion. The generic action of requesting that an action be
performed is named request in the ARIES knowledge base. Agents will perform request
actions at various times, requesting that E be performed. In order for a given event E to
be first-come-first-served, it must satisfy a temporal constraint between requests and their
satisfaction. Namely, if two requests for E are issued, at times ti and t2, and the requested
invocations of E occur at times t3 and t4, then if t1 < t 2 then t3 < t4.

79

5.4 The impact on automated tools

The above techniques all enable analysts to construct new requirements by reusing por-
tions of existing requirements and domain knowledge. Our experience suggests that it is
unrealistic to expect all concepts to be used in a requirement to be present in reusable
form. Hence, reuse techniques must be complemented with techniques for adapting and
modifying existing knowledge. While analysts can informally reuse descriptions (i.e., cut-
ting and pasting as in a text editor), there are many advantages to be gained by using
evolution transformations to control this process.

There is a strong coupling between parameterized specifications and evolution transforma-
tions. Manytransformations introduce specification constructs having a stereotypic form.
The form of the intermediate object created by such transformations can be stored in a
folder and instantiated as needed. We further discuss transformation issues in Chapter 7.

5.5 Examples of Reuse

The following two examples illustrate how ARIES supports the process of reusing require-
ments. The first example shows how ARIES helps analysts in constructing coherent use lists
for folders. The second example shows how ARIES aids the process of integrating folders
developed by different analysts.

5.5.1 Adjusting a use list

One of the folders in the Advanced Automation System specification is a folder called
automatic-tracking-ca pa bility, describing the functional requirements for automatic tracking
of aircraft. Figure 5.6 shows the set of folders that this folder uses. The total number of
folders used is rather large, fourteen, of which nine are marked as reusable.

Suppose that we try to remove a folder from this list, such as track-data. This can be readily
accomplished by performing modifications to the presentation: one clicks the mouse on
the icon for automatic-tracking-capability, and a menu of operations of this folder conies
up, one of which is REMOVE-FROM-USE-LIST. One then clicks on the folder to remove,
and the arrow linking the two folders is deleted. Figure 5.7 shows the result of performing
this step.

Now, suppose that we add a new folder to the use list, such as tracker-beliefs, a folder
containing generic information deducible from trackers, e.g., the notion that a track signifies
a belief that the tracked object is within a given distance friom the ostensible location of

80

Folder Inheri tanrce for AUTlOkGTIC-TRA.CCXUG-CAPABILITY

JOIN EI
AIA(T TRAC AIRCRAF PEFINFP(RD R NS1QAC AIRCRAT-TA W I. jIRC) C9EATE FL~IGHTTi

DESIM

DEOT 1SC-flW

LIPBATE

Figure 5.6: Folders used by automatic-tracking-capability

Folder Inheritance

Folder Inheritance for Al7IONATIC-TflA4KING-CAPABILITY

:44
JO N AASCW C W ICAT P DFm A IRC I W -RA RC a TAK CFEAE FIM T..

SPLIT

Folder Inheritance for AU7T0HATIC-TRA~CX1NG-C"AAzrLIyY

MODIFY ~ [f tf t f t f t f

JOINi
TRK WACK WI RIMI OUE RA TRT A T-II T RCK RICK IF 0 N E T IfT

SP.IT DATA lEiS I -DTA ING II TATIOlN TE lNATION 10fTIO PLANi TH

DESTROY
CREATETE I

KNU SI'CT t--TC

lESSING
PROMOTE

SPLICE

LIPOTE
par..jr -C.ate-N~-Foli. I ee

Figure 5.8: Final state of the use list for automatic-tracking-capability

the track, to some degree of confidence. An attempt to add this folder to the use list causes
the following automated assistance to be initiated.

e ARIES checks for conflicts between the terminology in tracker-beliefs and the termi-
nology in the folders that automatic-tracking-capability actually uses. In this example,
there are no such conflicts.

• ARIES presents a list of folders that the new folder uses, and offers the option of
including them at the same time. In this case, it turns out that tracker-beliefs makes
use of track-data. We therefore choose to add track-data back into the use list. The
final result is shown if Figure 5.8. The changed folders are now marked solid on the
diagram, indicating no longer in the use path.

5.5.2 Merging conflicting definitions

As an example of integrating different workspaces, consider again the handoff folder in
the Advanced Automation System, discussed in Chapter 2. In order to make sure that
the requirements for handoff are consistent, one might want to check to see if there are
any conflicting definitions for handoff. One can accomplish this in part by requesting that

82

Refinable Gist for HANDOFF

procedure Iwndoff(radk: track)
1= steps (i it-I wndof e(track) ;

Saccep t-l n d off(tra&l))

Quit Mark Edit

Figure 5.9: Reusable Gist definition of handoff

ARIES search the knowledge base for definitions of events named handoff, and see if there
is more than one definition.

It turns out in this example that there two definitions of handoff: one in the handoff folder,
and one in the automatic-tracking-capability folder. Evidently the analyst who specified
automatic tracking capability was concerned with how handing off of control might interact
with tracking.

If we inspect the two definitions, using the Reusable Gist presentation, it appears that they
are equivalent. Their definitions both appear as in Figure 5.9. This might suggest that one
could simply substitute one definition for the other. However, appearances can be deceiving
in cases such as this. Both definitions indicate that handoff consists of two substeps, called
init-handoff and accept-handoff. However, we cannot tell by inspection of this presentation
whether they are the same definitions-there may be duplicate definitions of each of these
concepts, just as there were duplicate definitions of handoff. Further analysis is required
to determine whether the two definitions can be safely merged.

At this time the ability of ARIES to determine mergeability automatically is rather limited.
It can detect attempts to introduce conflicting concepts into a folder, as was illustrated
in the preceding example. This enables it to warn the analyst that the two definitions of
handoff refer to different definitions of handoff-init. Figures 5.10 and 5.11 show the two
definitions of handoff-init, and highlight the main discrepancy between the two definitions:
one asserts a handoff-in-progress relation when handoff initiation starts, and the other does
not. Presently it is the responsibility of the analyst to recognize such differences, and
initiate edits to remove them.

Assuming that the author of the automatic-tracking-capability folder had the same notion

83

Refinkable Gist for flT-HANDOFF

procedure in it-Iwandojft track: track)
roles (cutrrent-con Ira len~con traler IcanIra [(current-con Ira ler, track)1

receiving-contra Ilerwon Ira [Ir INEXT-CONTROLLER(track paired,
receiving-contraoller)

precondition con tra I(curren I-con tro llen track)
postcondiltion track-status (tracký, 'cro~sstell)

receiving-con troller);
track track-statas <- 'vcra~sstell)

Quit Mark Edit

Figure 5.10: Definition of init-handoff in handoff folder

Refiriable Gi-st for INIT-HANDOFF

procedure in it-ian dofifttrack: track)
precondition track-status (tradcJ 'normal)

=track track.-status <- 'ceross tell

Quit Mark Edit

Figure 5.11: Definition of init-handoff in the automatic-tracking-capability folder

84

of init-handoff in mind as the author of the handoff folder, it should be possible to elaborate
the definition in automatic-tracking-capability, and attempt to merge them. ARIES is able
to recognize some cases where duplicated definitions really are equivalent, and can be
merged, specifically cases of types and relations that have isomorphic definitions, referred
to in separate folders or definitions. In such cases the analyst is free to start substituting
references to duplicated definitions, and if this is successful, then remove the definition that
is no longer needed. In this manner the two definitions of handoff are gradually reconciled
and merged.

85

Chapter 6

Automatic Reasoning for
Requirements Engineering

While automatic reasoning in some form goes hand-in-hand with knowledged-based sys-
tems, it is instructive to consider separately what automatic reasoning might mean for
requirements/specification work and specifically describe what we have implemented in
ARIES. Automatic reasoning helps requirements analysts by deriving system/software
properties which go beyond original input. By automatically deriving some properties
from others, support tools save the analyst from off-line back-of-the-envelope analysis and
integrate the results into a unified evolving system description. By recording the reasons
for propagated values, a support tool automatically retracts assertions if analysts change
their mind about supporting statements.

Automation is crucial because of multiple approaches to system modelling and because of
the considerable interdependency that exists among requirements. For example, as was
noted in Section 3.5.1.2, there is more than one way of representing states as relations
in the ARIES Metamodel. Reasoning capabilities may be required in order to recognize
alternative formulations as equivalent. At the domain modeling level, an analyst may
specify the sampling rate of a tracker directly or may indirectly constrain the sampling rate
by establishing properties of the radar system which supplies the data. System size, power,
or accuracy requirements are often in tension with system processing-time requirements.
This important nonfunctional requirement area was a focus of the recent Requirements
Engineering and Rapid Prototyping Workshop [9]. This workshop pointed to the need for
tools which provide for conflict resolution and predictions of the impact of change involving
nonfunctional requirements.

In some cases, tool designers can handle the underlying interdependency by requiring that
information be acquired and represented in a particular way. For example, as long as states

86

are created only via ARIES'S state transition presentation, we can ensure that states are
modeled internally in only one way. However, it is our belief that restrictions such as this

are bound to fail. As we argued in Chapter 3, broad expressivity is highly desirable for
a requirements acquisition system, and is one of the fundamental design goals of ARIES.
Where possible, we have attempted to employ automated reasoning techniques to integrate
and reconcile acquired requirements, rather than insist that analysts express requirements

in specific ways that ARIES is prepared to accept.

6.1 A framework for reasoning

Our framework for reasoning has been influenced by the nature of human-machine in-
teraction needed for requirements/specification work, and by an analysis of appropriate

deduction methods. We have for the most part adopted interactive approaches, where the
analyst and the assistant both contribute to the analysis process. The analyst is allowed
significant initiative in this process.

When the analyst takes the initiative, and proposes an elaboration or change to a re-
quirements specification, the intelligent assistant should be responsible for monitoring the
analyst's change and deriving consequences from the change. The unit of change is a step
- a quantization of the development process associated with significant analyst-initiated
actions to modify the specification. In ARIES, steps are invocations of evolution transforma-

tions. Each transformation is typically implemented as a collection of database assertions
involving the transformation's input parameters, Thus what appears to the analyst as a
single step may in reality consist of a series of steps. An intelligent assistant can pro-
vide three levels of support built around the notion of steps: prevention, recording, and

consistency maintenance.

"* Prevention

Steps are typed and there is a filtering (e.g., not available, not mouse sensitive) of
types that are strongly prohibited given the phase of the development, some features
of the evolving specification, or the focus of attention (e.g., current folder or pre-
sentation). In ARIES, the most important example of this is the filtering of editing
gestures. The selection of an editing gesture retrieves a cluster of evolution transfor-
mations which will modify the specific objects along the dimensions visible within a
specific presentation.

"* Recording

Significant (i.e., analyst-initiated) steps are recorded. We anticipate extensive use of
step recording for replay wherein the analyst can view the history of these steps, can

87

retreat to a previous point in the development, and can replay a sequence of steps.
Many of these capabilities have already been demonstrated in the earlier Specifi-
cation Assistant system. In ARIES, data structures are posted when an evolution
transformation has been successfully applied.

* Consistency Maintenance

The analyst can anticipate a well-defined protocol for the handling of inconsistency.
When a step produces an inconsistent state, an intelligent assistant will notify the
analyst of the problem and provide some focussing on ways to resolve the conflict.
The underlying implementation approach can be through checking applicability con-
ditions of operators or through forcing a reversible conflict in the specification. In
ARIES, some portions of a specification are managed by a constraint propagation
system (described below) providing immediate feedback on contradictions. When
contradictions occur, ARIES will either automatically resolve the contradiction based
on a user-declared level of support for assertions or will immediately notify the ana-
lyst of the contradiction and present a list of originating premises which the analyst
can select from to resolve the contradiction. As another example, requested mod-
ifications may violate applicability conditions of an evolution transformation and
ARIES immediately notifies the analyst of the problem. As a third example, concrete
simulation may uncover violations of slr- -ification invariants. In this case, analysis
and feedback to the analyst is delayed until simulation time.

6.1.1 Desirable propagation

Propagation can occur in an aggressive (i.e., resulting in immediate propagation or consis-
tency checking) or lazy (i.e., performed only upon analyst request for information) fash-
ion. For example, automatic classification might typically be performed as an aggressive
deduction, while a concrete simulator usually runs in response to a specific analyst re-
quest for information. The choice of approach depends on the computational expense
to produce information and the relative value of the information to an analyst. The
following list indicates some highly desirable forms of propagation associated with require-
ments/specification support in general.

e Classification-determining the class of an object based on the assertion of several
properties that the object participates in. For example, one can automatically clas-
sify a tracking procedure as a smoothing procedure (using trajectories to adjust noisy
data to conform to known smooth curves) if one knows that the object tracked is a
satellite and that reliable tracking is more important than processing time consider-

- ations.

88

"* Customization-applying a general principle to a specific situation. (e.g.. V(x)P(.r)
-> P(xo) when only one x exists.) For example, a loop specification that applies a

particular procedure to each entry in an enumerated list can be simplified when the
list contains only one element.

"* Defeasible Reasoning-supplying default values that can be assumed to hold in the
absence of evidence to the contrary. Specification of user interfaces can take advan-

tage of default values for positioning and extent of windows. Nonfunctional properties
can be assumed to have a stringent value unless otherwise specified.

"* Concrete Simulations of System Behavior. For example, a simulation might show
the behavior of traffic lights when individual vehicles are located in traffic lanes and
oriented to move toward a traffic intersection.

"* Logical Entailment-deduction of logical consequences of assertions. For example, if
a relation R is known to be transitive, R(a, b) and R(b, c) justify the conclusion that
R(a,c).

"* Symbolic Evaluation. Symbolic evaluation is a form of testing. Rather than executing
a program with respect to data values, symbolic data is used. As a program is
executed, symbolic expressions are built based on the statements executed. At the
end of an execution, the output value from a symbolically evaluated program is some
symbolic expression over the input symbols.

"* Coercion-automatically supplying specification fragments that fill in the gaps be-
tween other fragments. For example, reusable components may contain parameters
which can be filled in with parameters from other components discovered through an
examination of an approximation space. As illustration, the aircraft location asso-
ciated with a tracking specification can be supplied with slant range, azimuth, and
altitude measurements generated by a radar component.

"• Explanation-tracing facts back to original assertions can help an analyst to un-
derstand why specific requirements have been established. In conventional develop-
ments, requirements traceability matrices provide a text-oriented form of syntactic
explanation (e.g., a paragraph number from a document, an allocation to a subsys-
tem, the name of the specification author). With deduction we aim at semantically
based explanations using underlying formalisms and paraphrasing capabilities to pro-
vide more informed descriptions of requirements and requirement interrelationships.

"* Retraction-removing all facts which are no longer supported. For example, a pro-
cessing time requirement may restrict a systems ability to meet an accuracy require-
ment. If the processing time requirement no longer holds, the restriction on accuracy
should also be removed.

89

6.1.2 Tractable computation

It is important to control the application of such reasoning techniques to gain as much
power as possible while avoiding intractable computation. The ARIES representation is ex-
pressive enough that deriving useful abstractions of specifications can be computationally
expensive or even intractable. A case in point is the specialization hierarchy of events.
Events are linked to other events by the generalization relation, just as types and rela-
tions are. Once such relations have been computed, presentations and transformations
can take advantage of them. But our definition of event specialization requires that the
preconditions and postconditions of the generalized event must be implied by the definition
of the specialized event. Since preconditions and postconditions can be arbitrary logical
predicates, perhaps containing temporal or higher-order operators, proving that such a
specialization relation exists can be arbitrarily difficult. To avoid intractable reasoning, we
have focused on more specialized techniques that can be opportunistically employed to an-
swer questions at critical times in a specification development. ARIES processing elements
need only operate on a narrow subset of the knowledge base. The fact that one relation
may be defined in terms of others is not apparent to the tools. Thus each tool can view
the knowledge base as if it had narrow expressivity.

6.2 Approaches to reasoning in ARIES

Reasoning capabilities in ARIES fall into two categories. The first category consists of
reasoning that is performed automatically in reaction to changes initiated by the analyst,
or in response to queries posed of the knowledge base by tools. The abstract relations in the
ARIES Metamodel, which are computed automatically as described in Section 3.5.1, fall into
this first category. The second category consists of tools which analysts may invoke directly
in order to draw conclusions about the specification. This category includes a simulation
tool. A compiler generates executable code from ARIES specifications, and this code is
then run in the simulator. The simulator notifies the analyst whenever a requirement is
violated during the simulation run.

While it is possible to uniformly handle all invariants by testing them in simulations,
there are advantages to having the ability to reason about invariants as static properties
of systems, as requirements are being acquired. In order to use a simulator to validate
requirements, it is necessary to set up a dynamic environment to perform the test. Other
general purpose validation techniques, such as theorem proving, can require substantial
processing time and can be difficult to use. Low-cost analysis techniques that can be
employed automatically by the assistant can reduce the amount of effort analysts have to
spend with general-purpose tools.

90

Static analysis techniques rely on special-purpose algorithms to perform specific kinds of
analysis tasks. They can be thought of as checking constraints, for a special class of
constraints. This point is developed in some detail in [77].' Static analysis techniques
are employed in ARIES both in reactive constraint processing tools and in analysis tools
invoked directly by analysts.

6.3 Automatic constraint analysis

6.3.1 Constraint propagation

By modeling redundancy within a structural framework for specifications, we exploit con-
straint propagation in a manner similar to its use in circuit design [71]. In the ARIES

prototype, this constraint capability has been primarily used for enforcing nonfunctional
requirements and for managing complex mathematical or domain-dependent engineering
interrelationships.

The approach we have taken is similar to other constraint propagation work. As with
other approaches, each constraint restricts the values for a collection of variables. The
restrictions are often bi-directional (e.g., in the equation a + b = c, any two assignments
restrict the third). The constraints must be between different variables, e.g., constraints
such as a = a are not permitted.

Our approach differs from constraint satisfaction methods, since we are not typically task-
ing ARIES with finding a complete solution. In the requirements domain, underconstrained
situations are the norm. Analysts "fill in" enough information to properly restrict sub-
sequent implementations; completeness is difficult to achieve and often unnecessary. Our
concern is centered more on detecting those conflicts which arise when analysts inadver-
tently specify unachievable systems.

6.3.1.1 An example

An air traffic control example may be helpful to clarify the issues involved. To ensure that
air safety continues during handoff, air traffic control specifiers may require that aircraft are
tracked for a minimum time or minimum distance before entering an air sector. They may
also require that a minimum number of radar contacts are made on entering aircraft. These

'This paper describes how a constraint system might be used to characterize and enforce new classes of
constraints. The following are several classes: extended type checking, dimensional analysis, reasoning about

units, and estimating error bounds.

91

requirements are related to other factors which may be beyond the control of the specifiers
such as maximum speed of aircraft and scan period of radar installations. Typically, these
relationships are expressible as mathematical or engineering approximation formulas. One
such formula was shown in Figure 3.2. The following is another example of a similar
nature:

invariant inv2 Forall (ACCC:ACCC, ac:aircraft)
time-to-reach-sector(ac) * max-speed(ac)=

alert-distance(accc)

At any time in the specification process, analysts need to know what parameters might
impinge on a given requirement. For example, the analyst might wish to know something
about the relationship between aircraft speed and the rest of a specification. Also, analysts
need to know about conflicts that exist between competing requirements. For example,
if the aircraft speed, the radar scan-period, the safe number of contacts and the time to
reach a sector are all set independently, the specification will be overconstrained (the time
and distance values follow from the other parameters).

6.3.1.2 ARIES constraint mechanisms

ARIES implements a constraint system modelled on Steele's Constraint Language [73]. This
system performs local propagation of values and various forms of consistency checking.
Propagation occurs bi-directionaliy through propagation rules connected to nodes in con-
straint networks. An underlying truth maintenance system is responsible for contradiction
detection, retraction, and tracing facts back to originating assertions.

The significance of the ARIES mechanisms is that they blend constraint-based reason-
ing with other powerful reasoning capabilities to form a substantial basis for require-
ments/specification support. We have used a hybrid implementation approach similar to
the Socle-based [38] approach of KBRA. In Socle, variables are slots of frames and con-
straint processing complements friame-based inheritance and procedural attachment. In
ARIES, variables are relations on type-declarations and constraint processing complements
AP5 consistency and automation rules.

Associated with a relation (e.g., scan-period) and a type declaration (e.g., radar) there
exists a justification structure. AP5 adders and deleters are used to push information
across the AP5/Constraint boundary to the justification. The elements of the justification
structures are described fully in [73]. Briefly, a cell is created for a variable (in ARIES, a
relation and type declaration pair). This ccli is a member of a propagation node, a collection
of cells and a repository. Other cells in the node are pins of the constraints which restrict

92

the variable. For example, the scan-period x radar cell will be in a node with a pin of
a multiplier constraint (invl) and an equate constraint (inv3). The repository contains
information shared by all the cells including the supplier cell-the cell which carried the
value to the node, the rule which fired to carry the value, the support level (default,
supposition, belief, or constant), and the value itself. If the cell is directly associated with
a variable, it contains back references to that variable. In all, a node contains enough
information to locally propagate or retract the results of change. When a node gets a new
value, all the pins in the node are examined and associated rules are fired.

The four levels of support-default, supposition, belief, and constant-are set by the user
to model the volatility of an asserted value. ARIES uses this level of support to either
automatically retract culprits when conflicts occur or to at least notify the user of the
most likely culprits for retraction. Only weakest level premises are reported to the user
(i.e., intermediate values in complex formulas and values with higher support levels are
pruned). In the case of conflicts, defaults automatically bow out. Somewhat tentative
values such as results of measurements which may need to be checked again or guesses can
be asserted with sup)position support. A strongly believed value can be asserted with belief
support. In addition, belief support can be used to layer the ordering in which users must
deal with conflicts. An assumption about the appropriateness of making a computation
can be achieved by setting an activator/inhibitor pin (available on many constraint types)
to activate with belief status. The inhibiting propagation option is then hidden until the
user gains confidence in tentative results and the conflict exists among competing beliefs.
Finally, analysts can enter never changing value (e.g., 7r) as constants.

6.3.1.3 Helping the analyst manage nonfunctional requirements

The ARIES user interface to the constraint subsystem is through the Nonfunctional Prop-
erties presentation. Some requirements are naturally acquired via such speadsheets. Non-
functional requirements are often of this character. Figure 4.2 shows a spreadsheet of
nonfunctional requirements related to performance of radars monitoring the approach to
an airspace sector.

The "fall through the cracks" problem is addressed by a relation which keeps track of
the specific properties which are to appear in the spread-sheet for a specific system con-
text (i.e., a folder). For example, reliability, scan-period, alert-distance, time-to-reach-
sector, max-speed, safe- nbr-of- contacts, sampling-interval, sensor-error, max-acceleration,
and positional-error appear in the atc-tracking-reqs spread-sheet presentation. By inspect-
ing this presentation, the analyst can see if all concerns have be dealt with. More directed
agenda-like queries such as "Tell me all of the atc-tracking properties that I care about,
but have not yet defined" can be easily formulated, but at present are not part of the user
interface.

93

ARIES provides for some unit analysis capabilities. Nonfunctional properties have unit-
types. For example, the max-acceleration relation is an accel-unit type. This implies that
allowable values include only values whose units are of the form distance-unit divided by
time-unit squared (e.g., ft/sec2). These unit types are used to check data entry and
also to perform dimensional analysis and unit conversions. Qualitative unit types are also
provided. These types have "acceptable values" which are selectable from menus when the
analyst attempts to set a value.

6.3.2 Incremental static analysis

The other two major types of dynamic reasoning in ARIES are derivation of abstract AP5
relations between specification components, and incremental derivation of static analysis
information. Derivation of abstract relations has already been described in Chapter 3.
Incremental static analysis will be described in more detail here.

The ARIES incremental static analysis package is derived from the static analyzer developed
for the Specification Assistant [47]. Like the earlier system, it incrementally maintains an
index between each definition in the specification and the references to each specification.
In the process it builds and maintains a symbol table with entries for each definition.
This information is employed by further static analysis tools which may be invoked by the
analyst as needed.

The ARIES incremental analyzer improves on the earlier system in several respects. The
earlier incremental analyzer did relatively little analysis in an incremental fashion. Rather,
it would record when static analysis information became out of date, due to modifications to
the specification. If a tool such as a transformation needed the static analysis information,
and the current information was out of date, it would have to be recomputed. This resulted
in a noticeable delay in processing.

The new incremental analyzer actually maintains the static analysis information increme-
nally. It is triggered by AP5 rules in response to any change to the AP5 relations in the
ARIES knowledge base. Furthermore, it maintains more useful information incrementally.
For example, it associates with each folder a list of the references in the folder that do not
have a corresponding definition. This list is updated as definitions or references are added,
modified, or deleted. This improved analysis is achieved without incurring a performance
penalty.

The reason why the static analyzer is able to do a better job is that it operates on the ARIES

internal representation, while the Specification Assistant's analyzer operated on Gist parse
trees. Because Gist syntax and semantics are quite complex, analysis was time consuming,
and incremental analysis was difficult. The ARIES representation is substantially simpler,

94

with fewer constructs and a more straightforward semantic interpretation. Incremental
processing is therefore much easier to achieve.

6.4 Static analysis tools

Various analyst-invocable tools have been provided which aid in the analysis process. Some
of these are specialized static analysis tools, making use of information gathered and main-
tained by the incremental static analysis process. The other major analysis tool is the ARIES
Simulation Component, which is described in the next section.

6.4.1 Static analysis tools

Several static analysis facilities are provided for analysts in the form of functions that may
be invoked on folders or folder components.

The most commonly used static analysis facility is the type checker. It reports errors
such as unresolved references, duplicate definitions, type mismatches in expressions, and
the like. These sorts of analyses have been well documented elsewhere [1]. The main
difference between the ARIES type checker and other similar systems is its reliance on the
information gathered by the incremental static analyzer. The incremental analyzer has
already identified undefined references before the type checker is invoked; the type checker
reports these errors, and then proceeds with further analysis. Subsequent analysis relies
heavily upon the symbol table that has already been constructed.

Other kinds of specialized analysis is provided as part of the type checking package. Ex-
ecutability analysis checks for the constructs that cannot be executed by the simulator,
either high-level specification constructs or incomplete definitions. Mergeability analysis
compares definitions that an analyst wishes to merge into a single definition, and identifies
incompatibilities that could prevent such a merger. A range of specialized analyses can be
potentially provided in this fashion.

6.5 ARIES Simulation Component

Simulation in ARIES is performed by the ARIES Simulation Component (ASC). ASC is
used by analysts to reason about system behavior. In particular, the goal of ASC is both
to uncover undesirable behaviors and to ensure the presence of desirable behaviors in the

95

current specification. The result of this analysis is either to raise the analyst's confidence in
the correctness of the specification or to provide motivation for modifying the specification.

A variety of specification approaches have relied on direct execution or simulation to reveal
system behaviors. Guindon in [33] well documents her observations of system designers
at work and the benefits they gain from performing mental simulations of domain sce-
narios during the development process (i.e., during requirements acquisition, specification
development, and design). Below is an adapted list of the benefits noted by Guindon:

9 Analysts gain a better understanding of stated requirements.

e Analysts opportunistically uncover superfluous and/or missing requirements.

* Analysts can evaluate the current specification and design against stated require-
ments and domain scenarios.

Though the designers Guindon studied achieved these benefits during mental simulation,
Guindon advocates them as justification for automated support of simulation in general. It
is toward this end that the executable specification community has been working for some
years. Systems within this community include: Software Refinery, PAISLey, Statemate,
and OBJ. In general, each of these systems allows the analyst to execute a specification
in order to reveal the specification's behavior. The problem is that these systems are
limited in their ability to execute specifications which are inconsistent, incomplete, and/or
ambiguous. When an analysts using an executable specification approach simulates his/her
specification it will break at the first problem encountered. This is not necessarily bad
since it does act as a pointer to a problem in the specification, but it may not be the most
desirable result since the analyst may be focusing his/her activities on another part of the
specification. The analyst may not wish to deal with this first problem now, but is forced to
in order to achieve executability. This is in contrast to Guindon's designers which because
they are performing mental simulations are able to finesse these problems, focusing on the
behaviors of specific parts of the specification which are ready for simulation (i.e., believed
to be consistent, complcte, and unambiguous) while ignoring or approximating the rest of
the specification.

Currently an analyst using an executable specification systems handles these problems
by using the same techniques which mental simulation is able to take advantage of, in
particular: focusing, approximating, and ignoring. They do this informally by building a
simplified specification which focuses on specific parts of a more complex specification while
approximating other parts of the specification. Though analysts have had some success
with this approach, it has been done in an ad hoc fashion without explicit identification
of the analyst's focus and without justification of why some concepts are approximated
while others are ignored and others are left unchanged. As a result, one can not formally

96

characterize the relationship between the original specification and the resulting simpli-
fied specification. This in turn must cause one to question the validity of a simplified
specification's execution as an accurate predictor of behaviors in the original specification.

ASC differs from the systems above by formalizing the above notions, i.e., making its focus
explicit and justifying the approximations it introduces. As a result, ASC is able to formally
characterize the relationship between the original specification and the resulting simplified
specification and in turn the analyst is able to use the simplified specification's execution
as an accurate predictor of behaviors in the original specification. This last characteristic
allows the analyst to infer the results of reasoning performed on the simplified specification
about the original specification.

An understanding of how ASC accomplishes the above stated goal begins with the iden-
tification of domain scenarios. Guindon in [33] describes how designers used scenarios as
test cases during mental simulation. In this context, scenarios where used to determine
whether a particular projected chain of events occurred or not. In ASC this is known as
a validation question. In mental simulation, the designer uses his/her intuition about
the specification and the scenario to determine what concepts in the specification were
relevant for mental simulation. Depending on the relevance, the analyst decides either
to include, approximate, or ignore a concept and its associated behaviors in the mental
simulation. ASC accomplishes this same task by expressing validation questions formally
as a modified Data Path-expressions [39] and by performing influence analysis on the spec-
ification and validation question to determine the relevance of individual concepts. ASC

then uses the results of this analysis to recommend to the analyst approximations which
can be introduced to create a simplified specification. The introduction of approxima-
tions is a reformulation process. It continues until the simplified specification corresponds
to the informal focus referred to during mental simulation. At this point the simplified
specification is simulated to answer the validation question. More precisely answer the
question, "Is the data path-expression realizable in the simplified specification?" This an-
swer is then inferred about the original specification. The end result is that the discovered
answer either gives the analyst greater confidence in the correctness of the specification or
motivates the analyst to modify the specification.

6.5.1 Validation questions

One of the implications of Guindon's study [33] was the importance of scenarios as a means
for expressing problem domain knowledge. This idea is further supported by Fickas and
Nagarajan in [26] where they describe how analysts use hypothetical examples to explain
concepts, argue for/against the inclusion of concepts, and further refine concepts in the
current specification.

97

An interesting feature about these scenarios is their inherit completeness. When a domain
expert describes a scenario to an analyst he/she is relating a complete snapshot of the
behaviors the domain expert is concerned about. Via scenarios, a domain expert can
describe specific situations (whether normal case or exceptional case) at any level of detail
and in terms of the domain observable behaviors familiar to the domain expert.

Similar to how scenarios where used as test cases during mental simulation, ASC uses
scenarios as redundant descriptions of system behavior. The goal of simulation is to confirm
that the scenario is really redundant and that the behavior described by the scenario
is implied by the specification. It is in this light that Data Path-Expressions seem an
appropriate notations for formalizing scenarios.

6.5.1.1 Data Path-Expressions as Scenarios

Data path-expressions (DPEs) are an extension by Hseush and Kaiser [39] of generalized-
path expressions [31] which in turn trace their lineage to path-expressions [13]. In general,
DPEs are a means or characterizing execution paths through the behavior space of a
program via event patterns. DPEs have been used by data-oriented debuggers to monitor
the execution of a program and detect when the current execution flow is or is not the
same as the path described by DPE pattern. Such a pattern describes a partial ordering
of events and is not intended to describe a total program trace (i.e., arbitrary events may
be interspersed in a execution path which eventually satisfies some specific DPE). DPEs,
as described here, have two type of operands and a powerful set of operators for specifying
the concurrent characteristics among events. The following is an abbreviated description
of DPE syntax and semantics.

The syntax of DPEs corresponds to regular expressions. The operands are either control
events or data events.

* A control event corresponds to the invocation of the named procedure or demon or
any specialization thereof. For example, Move is a control event which is satis-
fied whenever any of the following occur: 1) the procedure move is invoked, 2) the
procedure self-move, a specialization of move, is invoked, or 3) the trigger for the
demon continuous-move, a specialization of move, is satisfied (and thus in a sense,
continuous-move is invoked).

9 A data event corresponds to a database state becoming true and is determined at
the end of each atomic update. This state can be any predicate and is enclosed in
square brackets. For example, /signal-color(tl-1, 'red)].

The operators in DPEs are:

98

"* exclusive or (+) - exactly one associated event occurs

"* partial concurrency (&) - two associated events are partially concurrent

"* sequence (;) - two associated events are totally sequential

"* repetition (*) - associated event occurs zero or more times

"• selection (1) - nonexclusive or, e.g., alb means a + b + (a&b)

"• permutation (,) - associated events occur in any order, e.g., a,b means (a; b)+(b; a)+
(a&b)

A simple example using only control events would be the following scenario which describes
legal access to a file:

Open;(Read I Write)*eClose

Paraphrased in English, the above scenario is:

Invocation of the procedure Open is followed by an arbitrary number of invoca-
tions of the procedures Read and Write which is then followed by the invocation
of the procedure Close.

A simple example using only data events would be the scenario that describe the sequencing
of a traffic light tl-1.

(Usignal-color(tl- 1, 'red)];
[signal-color(tl-1, 'yellow)];
[signal- color(tl- 1, 'green)])*

DPEs also supports conditional events which allow the analyst to qualify a control event
with a predicate. A condition event follows a control event and is enclosed in square brack-
ets. It may do one of three things. Make a parameter visible to the rest of the scenario,
e.g., car in move[carl. Initialize a local variable, e.g., tl-1 in change-light-color[tl-1 = tl]. Or
bind all free variables during the evaluation of a predicate, e.g., car in move[exists (speed)
car-speed(car, speed) and speed > 0]. Variables once bound or parameters one made visible
remain bound for the duration of the scenario (i.e., single assignment). Subsequent refer-
ences to a variable or parameter are treated as predicates. The example below illustrates
this point.

99

Open/file];(Read/file] I Writecfile]) *,'Closefile]

During execution of a program which manipulates a file, the invocation of the Open pro-
cedure binds file to the opened file. Subsequent references to file by the remaining control
events require that the file parameter be bound to the same opened file. In this way, when
multiple files are opened and manipulated, distinct scenarios will exist for each opened
file. This refinement corrects the error in the simpler scenario above which would have
incorrectly been satisfied by the following more specific scenario:

Open/filel = file]; Close/file <> filel].

Paraphrased in English, open some file and then close some other file.

6.5.1.2 Extensions to Data Path-Expressions

Thus far the description of DPEs has been consistent with [39]. This subsection will
describe three extensions that ASC makes to DPEs. First consider the following informal
scenario:

An aircraft is moved from one location to the next by the procedure move.
The location-of the aircraft is updated to a known next-location. Updates
to location-of should be performed by the agent move. All other updates to
location-of are errors (i.e., fail).

This scenario is formalized via the following extended DPE. The bold text indicates ex-
tensions to DPEs.

(tl::move[aircraft] agent Al;
([aircraft.location-of = aircraft.next-location as-of tl] done-by Al +
(/aircraft. location- of <> aircraft. next-location as-of t 1]{fail})))*

The first extension is temporal labels. tl from above is a label for the time when the control
event was satisfied. This then allows the following data event to formulate a predicate which
contains a reference to the state when tl occurred. In this example aircraft.next-location
as-of tl is an expression which asks for the next-location of an aircraft as of the beginning
of the move operation. In the context of this scenario, one is asking if the aircraft's current
location is the intended next location. If it is not the intended next location, the scenario
will flag a fail condition.

100

The second extension is agent identification. Agent identification is important because one
may care not just that the execution is in some state but also what agent caused this state
to become true. In this example, the analyst wants to know that the aircraft was moved
to the next location and that it was done-by the labeled agent Al which is the procedure
move.

The third extension refines the semantics of a control event. It is not illustrated in the above
example. The normal semantics of a control event is that it is satisfied at the invocation
(or start) of a procedure. This extension allows the analyst to place a modifier before a
control event which causes satisfaction to occur at other times during the execution of a
control event. The modifiers are "start", "complete", "not start", and "not complete".
"Start" is the default modifier. The affect on the semantics of a control event is as the
modifier name implies.

6.5.1.3 Scenarios and Anti-scenario as Validation Questions

Via DPEs the analyst is able to describe desirable and undesirable behaviors, known as
scenarios and anti-scenarios, respectively. In the context of validating or debugging a
specification they are known as validation questions. Validation questions are unique in
that they may completely characterize some scenario or anti-scenario without requiring
the specification to be complete. Figure 6.1 is an example of such a scenario. It will be
referred to as validation question VQ1.

(([exits(p:position) track-position(TI, p) and
within(p, Si)];

[within-handoff-computed-point(T1)];
[witldn-accept-handoff-computed-point (Tl)]) &

complete alert-controller[T1 = track]* &
complete handoff[T1 = track]) ;
[exits(p:position) track-position(TI, p) and

within(p, S2)]

Figure 6.1: A Successful Handoff Scenario for Validation Question VQ1

The English paraphrase of figure 6.1 is:

When a track, T1, moves through several states beginning with being in the
airspace S1, the event alert-controller may be completed zero or more times
and the event handoff will be completed before the track, T1, enters the new
airspace, S2.

101

The analyst has asked this question because he/she would like to validate that the stereo-
typical case of a track moving into a new airspace is properly handled, i.e., a successful
handoff occurs.

The analyst refines this scenario by defining what a successful handoff scenario is: xxx

Alternatively, the analyst could have described the above situation as an anti-scenario,
i.e., a description which describes a behavior the analyst does not want to occur. In this
case, the anti-scenario is a track Ti moving to the airspace S2 while handoff has not yet
completed (see figure 6.2.

(([exits(p:position) track-position(T1, p) and
within(p, S$)];

[within-handoff-computed-point(T1)];
[within-accept-handoff-computed-point(T1)]) &

complete alert-controller[Ti = track]* &
(not complete handoff[Ti = track]) &
[exits(p:position) track-position(T1, p) and

within(p, S2)])

Figure 6.2: A Handoff Anti-Scenario for Validation Question VQ2

Analysts use both scenarios and anti-scenarios because they are able to infer different
results based on their success or failure during simulation. Success of a scenario tells the
analyst that some path exists through the specification's behavior space. This raises the
analysts confidence, but does not guarantee success in all situations. Failure of a scenario
points out a problem with the specification and motivates its modification. Success of an
anti-scenario has the same result as failure of a scenario in that it point out a bug. And
finally, failure of an anti-scenario guarantees that this behavior is never possible. Finding
this last result is often difficult since it requires traversal of the entire behavior space.
In cases were the behavior space is infinite showing an anti-scenario to be unrealizable is
impossible.

Later in this section, large or infinite behavior spaces will be used as one of the motivations
for simplified specifications where the resulting behavior space is small enough that showing
an anti-scenario to be unrealizable is possible.

The role a validation question plays during simulation of a specification is analogous to
the role an input/output specification plays during testing an implementation. The task of
the analyst differs from the task of the test engineer in that the latter has a well-defined,
component or system which is believed to be complete and consistent upon which he/she
run a test cases while the former does not have such expectations.

Determining success or failure of validation questions as described above requires that
the specification be sufficiently complete so that the resulting behavior space is either

102

approximately correct and ready for validation or a superset of the intended behavior
space and is thus amenable to pruning which focuses on subsections of the behavior space.
A third approach is to make up for incompleteness by approximating what is missing.

Regardless of the approach, ASC supports the notion of focusing a specification based
on the validation question. Such a focus will be identified by introducing a new sys-
tem/environment boundary which partitions the specification based on the validation ques-
tion. The validation question and associated concepts will be contained within the new
system while remaining concepts will be contained in the new environment. The purpose of
this partitioning is two-fold. One is to include in the system those concepts that are being
tested during simulation with the expectation that these concepts are complete and at the
right level of abstraction. And two to identify the other concepts as in the environment
and thus may or may not be complete and are candidates for approximation.

The following subsection will describe how Influence Analysis provides the underlying
reasoning capability needed to define this new system/environment boundary. Influence
analysis will identify how one concept influences another and as a result highlight the
dependencies between various concepts in the specification.

6.5.2 Influence Analysis

Brooks in [11] warns that descriptions of software that abstract away its complexity of-
ten abstract away its essence. Influence analysis is a means of allowing the analyst to
see through this complexity to distinguish between concepts which are most relevant to
the validation question and those which are not. Once identified, ASC provides the nec-
essary tools to define a closed system made up of a simplified specification which defines
a "system" and component approximations which define an "environment". The result-
ing simulation model will be amenable to simulation and analysis and adhere to Brooks'
warning.

Influences finesse this issue by relying on rules which are easily computable and which
generate all potential influences rather than making claims about actual influences. As
such, the resulting influence graph should be considered a conservative representation of
concept influences - that is they may indicate influences which are not actually possible,
but are safe, in that they will not fail to indicate the presence of an influence that does
exist.

Once the initial influence graph is generated, more knowledge intensive approaches are
applied to remove many of those potential influences which are not actual influences.
Some of these are done automatically, others require interaction with the analyst.

103

6.5.2.1 Influence Graph Definition

Influence analysis extracts a graph from a specification such that each declaration is a
vertex and immediate influences between declarations are edges. There are three type
of immediate influences: control, information, and VQ. These concepts are operationally
formalized in terms of the ARIES Metamodel. Below is an intuitive definition of what these
influences are.

"* Control influences are concerned with influences which effect control flow during
execution, i.e., if and when behaviors may occur. Some examples of this class of in-
fluence are references in the trigger of a demon, invocation of an event, and references
in conditional statements.

" Information influences are concerned with the flow of information between con-
cepts. Stated another way, when information changes, how does it percolate through
the system? Some examples of these types of influences are: database updates, as-
signment statements, and definitional use of data declarations (i.e., relations, types,
and instances) by other data declarations.

" VQ influences are concerned with influences on the validation question. These
influences include all concepts referenced in the validation question's scenario.

Figure 6.3 is the Reusable Gist definition of the event accept-handoff. Figure 6.4 shows a
paraphrase of this event. The resulting primitive influence graph is shown in figure 6.5.

Demon ACCEPT-IIANDOFF(track,
current-controller:controller,
receiving-controller:controller)

precondition controlled(track, current-controller) and
handoff-in-progress(track,

current-controller,
receiving-controller)

postcondition controlled(track, receiving-controller)
steps(track.controlled .- receiving-controller;

remove handoff-in-progress(track,
current-controller,
receiving-controller);

track.track-status - 'normal)

Figure 6.3: Reusable Gist definition of the event Accept-HIandoff

The influence graph of figure 6.5 is most similar to de Kleer's mechanism graph from his
work in qualitative reasoning [18, 19]. The mechanism graph shows the causal influences
between concepts. A vertex contains an information value which represents a specific

104

INFORMATION

Paraphrase of ACCEPT-HANDOFF

ACCEPT-HANDOFF is an action of the system. Its participants are
a track, a controller CURRENT-CONTROLLER and a controller
RECEIVING-CONTROLLER. To perform an accept-handoff, the system
sequentially does the following three steps.

1. The system assigns the controlled of TRACK to
RECEIVING-CONTROLLER.

2. The sbstem deletes the fact that the HANDOFF-IN-PROGRESS
relation associates TRACK, CURRENT-CONTROLLER and
RECEIVING-CONTROLLER.

3. The system assigns the track-status of TRACK to normal.

There is a precondition that TRACK must be related by the
CONTROLLED relation to CURRENT-CONTROLLER and the HIADOFF-IN-PRORES,
relation must associate TRACK, CURRENT-CONTROLLER and
RECEIVING-CONTROLLER. There Is a postcondltion that TRACK must be
related by the CONTROLLED relation to RECEIVING-CONTROLLER.

Quit Mark Edit

Figure 6.4: Paraphrase of the event Accept-Handoff

circuit component attribute (e.g. the voltage or current at a given component). Edges
represent how a. change in a vertex value is propagated to adjacent vertices. Edges are
derived from either component models or domain specific heuristics. In influence graphs,
"a vertex represents a specification concept declaration (or fragment). Edges represent how
"a concept influences either the behavior or value of another concept.

The influence graph of figure 6.5 shows the immediate influences on and by accept-handoff.
Receiving-controller, current-controller, and track are parameters of the event. Ea .bling-
pred-of-accept-handoff is a composite node representing the precondition of the event. Con-
trolled, and, and handoff-in-progress are relation referenced by the event. Edges within the
graph represent the direction in which influences are propagated. Note that how each
influence effects a given node is not represented. This is in fact outside the capability of
influence analysis in ASC. None the less, this still provides a great deal of information to
the analyst when creating a, specialized specification as we will see later.

The goal of influence analysis is to focus on the influences in the specification which effect
the validation question. This is accomplished by taking the transitive closure of these
influences over the validation question to find all concepts which immediately or remotely
influence it. The resulting set of influences is potentially quite large. One way to filter
this set is to only include dynamic influences. The idea being that static influences do
not change during the course of a simulation and thus do not effect its dynamic behavior.

105

Influence Graph for ENBING-FRED-OF- T-IADOFF

GESTURES

MODIFYI

JOIN

SPLIT

DESTROY I

CRETE

DENOTE

PROMOTE I

INSERT

UPDATE Pareters V Icreate-Nea- Influence-Graph Cotmpil I I ntroduce-ftstract ion W Qilt rese

Figure 6.5: Primitive Influence Graph of the event accept-handoff

The remaining subsection address how to identify and abstract out these static influences
based on information in the knowledge base.

6.5.2.2 Automated Graph Abstraction

Though the graph in figure 6.5 could be used as is, it shows many influences which really
do not drive the dynamic behavior of the specification. This subsection will describe how
some influence abstraction rules are applied automatically by ASC. Figure 6.6 shows the
resulting influence graph. It is this graph, not the previous one, which the analyst is first
shown after influence analysis.

Below are some of the abstractions which are automatically applied during influence anal-
ysis.

"* Remove self referential influences.

"* Remove influences from concepts known to not be "real influences" (i.e., many com-
monly used relations, e.g., and, are categorized in the knowledge-base as not having
any dynamic influence).

106-

jInfluence Graph

Influetnce Graph for ACEPT-•DWFF

MODIFY

SPLIT

DESTROY

DEMOTE

PROMOTE

SPLICE

REMOVE

INSERT

UPDATE Parameters Create-New-Influenae-•raph CoWIle Intod - traction Otit reset

Figure 6.6: Influence Graph of the event accept-handoff

"* Remove static concepts (concepts declared to not change during execution). If there
is an influence on a static concept post it as an error instead.

"* Remove parameters since they are dominated by the control influence on the event
declaration they are a part of (i.e., who the caller is).

6.5.2.3 Interactive Graph Abstraction

Not all influence abstractions can be done in an automatic fashion. Typically, the presence
of certain influences indicate either an error in the specification or an opportunity to apply
an abstraction. The analyst must make these decisions. ASC identifies these cases during
automatic influence abstraction and then posts notifications via an agenda mechanism.
When the analyst is ready, he/she may view the agenda and the alternative actions recom-
mended by ASC. Recommendations typically include suggested transformations which can
cause the desired effect in either the evolving specialized specification or the underlying
specification. Some of these interactive suggestions are:

* When there are no influences on a type or relation declaration, suggest that the

concept should be declared static.

107

"* When there is an influence on a type or relation declaration, suggest that the concept
should be changed to dynamic (e.g., explicit or derived relation).

"* When an influence node has only a single input information influence and only a single
output information influence, suggest that the intermediate node be abstracted out
and the input and output nodes be modified to be a direct influence.

6.5.3 A Validation Question and Specification's Behavior Space

This subsection will show how to partition a specification and then reformulate it into a
simplified specification such that the simulation results of the simplified specification may
be inferred about the original specification.

Consider the following partitioning of a specification:

Spec = SYS + ENV

where Spec is the original specification, SYS is the system side of the partition, and ENV is
the environment side of the partition. SYS is defined to include the validation question and
associated concepts (what concepts are "associated" will be defined later). The expectation
is that these concepts are complete and ready for validation. Errors that result from this
expectation not being correct are the ones simulation is intended to uncover. ENV is
defined to include everything else. There are no expectations about its completeness.

Simulation of Spec does not prove anything. This is because ENV could have both extra
and missing behaviors as well as its desired behaviors. These extra and missing behaviors
affect the ENV behavior space in arbitrary manners and thus the overall behaviur of Spec.
If the analyst could ensure that some Spec' is a superset or subset of Spec, simulation
results would be more meaningful. Consider the following cases:

* if scenario P is not realizable in Spec+ then P must not be realizable in Spec and
therefore there is an error in Spec.

* if anti-scenario P is realizable in Spec- then P must be realizable in Spec and
therefore there is an error in Spec.

As a result of this observation, the analyst will approximate ENV to ensure that the
resulting specification, to be known as the simplified specification, is either a subset or
sl.perset depending on whether the validation question is stated in terms of a scenario or
an anti-scenario. More formally the simplified specification, SS, is defined as either:

SS = SYS + ENV+ for scenarios

108

SS = SYS + ENI'- for anti-scenarios

The next [subsubsections] will describe the partitioning operation followed by some extreme
approximation operations based on generalization and specialization of the ENV partition
to create either ENV+ or ENV-.

6.5.3.1 Defining a New System/Environment Partition

Defining a new system/environment partition begins with the validation question. Influ-
ence analysis identifies all concepts which are referenced by the validation question. All
influence paths are then traversed back until they reach an active agent. All traversed con-
cepts are included in the system SYS. All concepts which are influenced only by concepts
already in SYS are added to SY1S. All remaining concepts are part of the ENV partition.

6.5.4 Execution

The previous subsections described how to formulate the validation question and then
how to reformulate the specification to create a closed simulation model. This final sub-
section will describe how the specialized specification is compiled and what happens during
simulation.

The problem with simulating a high-level specification is that some of the constructs are
not automatically compilable in the traditional sense. Particularly troublesome constructs
in Reusable Gist are historical reference, control flow nondeterminism, and descriptive
reference. Historical reference is handled during the reformulation phase. Transformations
described by Feather in [23] are applied transform these references into appropriate record
and access structures in the specialized specification. Descriptive reference is handled by
taking advantage of that capability already present in AP5 [15] a lisp extension which the
simulator uses extensively. And finally, control flow nondeterminism is handled at run
time by the simulator. This subsection will describe the basic structure of the compiler
and simulator followed by how control flow nondeterminism is realized in ASC.

The ASC compiler compiles most constructs directly into AP5, with the exception of events
and invariants. Events are compiled into simulation tasks and invariants are compiled
into automation rules. The state transition diagram associated with the main validation
question is configured into the simulator so it will be animated during execution. The
analyst may decide to configure other monitoring facilities. The driving scenarios are
load into the simulator and the analyst initiates execution. The simulator then begins
executing the driving scenarios. These in turn may initiate other tasks which are added
to the simulation queue. The simulator manages multiple, parallel lines of control. When

109

there is no nondeterniinism the simulator works pretty much like an generic discrete event
simulator.

When the simulator hits a point during the execution where there is a choice on what it
will do next, it has found a nondeterministic point. It could arbitrarily choose the next
event and continue execution. In a completed specification this would be fine, but in
a specification under development points of nondeterminism often are points where the
specification has not been fleshed out fully. This is not to imply that the analyst must
flesh these points out now if he/she is not ready to, rather ASC provides a variety of
ways to handle these nondeterministic points. User interaction and probabilistic choice
are established techniques which are often acceptable. Restrictive scenarios may also be
used. Or finally, one may resort to arbitrary selection.

In all of the above cases, a wrong selection could be made. Violation of an invariant or
scenario is often the first sign that this is the case. ASC automatically monitors these things
and informs the analyst when they are violated. The analyst may then review the execution
history to determine what happened. In some cases the violation is a result of an error
in the specification, in others it is the result of an incorrect choice at a nondeterministic
point. For the former, the analyst changes the specification. For the latter, the analyst may
likewise change the specification by fleshing out the part of the specification responsible for
making the choice. Alternatively, the analyst may on the fly define an additional scenario
which guides the simulator through this point and allows execution to continue. The point
of this facility is to allow the analyst to delay resolving this issue so that he/she does not
get side-tracked from his/her current task.

Simulation continues until the driving scenarios are completed and the validation question
is satisfied. At this point the analyst either has enough confidence in the current spec-
ification to continue with development or he/she may continue validation with the same
validation question and a larger scope or he/she may validate other validation questions.

6.5.5 Related Works

One of the main problems with the testing approach to execution analysis is that it requires
that the system description be relatively complete and consistent before testing can be
performed, thus delaying execution analysis until later in the development process. The
use of a test harness around individual modules mitigates this problem by allowing the
analyst to test software modules independently from the rest of the system, but it still
assumes completeness and consistency within the individual module. Simulation extends
these capabilities by allowing the analyst to build simulation models which are abstractions
of the system description. In such models, the analyst focuses on specific concerns while
ignoring other aspects of the system. Common problems that need to be handled in order

110

to facilitate early execution are (1) undefined ard partially defined terms, (2) inefficient or
undefined algorithms, and (3) voluminous and therefore incomprehensible data. Below are
some examples of KBSE systems which used simulation models in order to address some
of the above problems.

The following capabilities are provided by knowledge-based simulation tools for software
engineering: (1) an abstraction process which reduces the size of the behavior space to be
validated, (2) the ability to approximate of incomplete portions of the specification, and (3)
the ability to focus on selective views into the executing system. Additionally, simulations
incorporate an execution environment which provide a suite of tools to facilitate client
interaction during validation. Simulation still faces many of the same problems faced by
the testing community-namely, selecting appropriate test cases and generalizing successful
execution of test cases to broader claims about correctness of the 6pecification.

6.5.5.1 Staternate

Statemate[36, 35], a CASE tool primarily built around state-charts, provides hierarchical
abstraction and execution by allowing the analyst to run simulations at arbitrary levels
of detail. The idea here is that, depending on what one is validating, different levels of
detail are appropriate. Statemate allows the analyst to traverse the system state-chart
decomposition and select which levels in the hierarchy will be active and thus drive the
simulation. The main limitation is that the abstractions used during validation are the
same ones built during construction. As a result, features which are orthogonal to the
system decomposition are difficult to validate without running everything at the lowest
level of detail and possibly being overwhelmed with simulation data.

"* emphasis on execution at arbitrary levels in the abstraction hierarchy [hierarchy is
the same for both validation and development]

"* execution may be step-by-step, random , or exhaustive

"* programmed execution - execution control language - sets break points, defines in-
formation (e.g., attributes to gather like time, memory, and other resource status)
to gather.

"* regression testing

This limitation of Statemate illustrates a general issue for simulation-based validation
systems. That is, the ability to present information in a different notation from the one
used during acquisition improves visual inspection. In a similar fashion, it is important in
both visual inspection and simulation to be able to validate an abstraction of the system

ill

that was not created when the specification was constructed. Such abstractions suppress
details that are not relevant to the system feature being validated, making analysis of the
abstracted specification more tractable and more focused.

6.5.5.2 PAISLey

PAISLey[81] addresses the issue of how to simulate incomplete specifications. If a func-
tion has not been specified, simulation is still possible. PAISLey supports either automatic
selection of an arbitrary value from the function's range or inclusion of user defined approx-
imations in the form of default values. The contribution here is that PAISLey augmented
the simulation model so as to allow the analyst to perform validation on other aspects of
the specification without being forced to define every aspect of the specification just to get
executability.

6.5.5.3 Spec Critic

Fickas' group at U. Oregon has built several t, ols which directly address the problem
of providing direction during specification validation. The Specification Critic [261 uses
examples or scenarios to show how a specification may or may not satisfy higher level,
informal requirements known as policies or goals. In this tool a user describes scenarios
which illustrate good or bad sequences of events. The tool then runs the specification
(an extended numerical Petri Net) to demonstrate that the scenario is possible or not. It
is then up to the analyst to modify the specification to disallow the bad scenarios, but
still allow the good ones. This tool was limited in that the links between specification
components/scenarios and goals are hardwired.

ASAP [3] attempts to address this "hardwired" problem by using a planner to automati-
cally find scenarios that show how specification components relate to client goals. In this
work, goals are represented as allowed, prohibited, or desired states. These are provided

to the planner as inputs of final states. Initial states also have to be provided by the user,
since they can not be inferred by the planner. The net result of this work was a disciplined
way to discover interesting test case scenarios and providing a way to run them against the

specification. The scenarios served one of two purposes - as an existence proof (i.e., there
exists some path through the specification which satisfies a given goal) or as a specification
invalidator (i.e., there exists some path through the specification which violates a given

goal).

112

6.5.5.4 Related Works in Safety

ASC is similar in approach to work in safety analysis which begins its analysis by defining
safe and unsafe situations and then reasons from there to determine what parts of the
system effect these safety condition. This methodology is described by Leveson in [52],
"System safety analysis procedures often start by defining what is hazardous and then
work backward to find all combinations of faults that produce the event." Toward this end
safety analysts often select a weaker criterion of acceptable behavior to prove rather than
attempting to prove the correctness of a program with respect to its original specification.

6.5.5.5 Partial Evaluation

Reformulation based on a validation question is analogous to how partial evaluation (mixed
computation) [21] is able to generate an efficient residual program based on a more general
program and a subset of its input parameters. This technique is potentially more powerful
because a validation question is a richer source of knowledge than just a list of input
parameters.

Not all optimizations are realizable during specialized specification construction. This
problem is pointed out by Meyer in [56] when applying partial evaluation to imperative
languages. The problem is that compile time execution can result in side-effects which are
not noticed at the appropriate time. This is because the side-effect could happen during
specialized specification construction and not during simulation. The problem with this
is that other parts of the specification which trigger on the side-effects of the partially
evaluated scenario will now not have those side-effects to react to at run-time. As a result
partial evaluation at specialized specification construction time must be constrained not
do anything that causes triggering states to disappear.

6.5.6 Evaluation of ASC

The success of the ARIES Simulation Component may be measured with respect to the
following criteria.

o ability to execute a specification where previously it could not be done.

o ability to execute a specification with less effort than was required before.

* ability to document requirements satisfaction.

e ability to make validation comprehensible to stake-holders.

113

e ability to provide a flexible approach for system validation.

Toward these goals, ASC has made considerable progress.

114

Chapter 7

Evolution

Evolution is ubiquitous during requirements acquisition and specification construction.
That this is so was recognized in the earlier phase of the overall KBSA project, and support
for the evolution of formal specifications was built into the Specification Assistant. During
the lifetime of the ARIES project, our belief in the need to provide support for evolution has
continued, and a major part of the project has been directed toward supporting evolution
in all phases of the now seamless activity of requirements acquisition and specification
construction.

We begin by recapitulating the arguments for why evolution should occur; next we de-
scribe evolution transformations, the mechanism by which the earlier Specification As-
sistant provided support for evolution, retained and expanded in ARIES; we continue by
describing the ways in which ARIES has gone beyond the Specification Assistant in its
use of evolution transformations, namely by providing superior ways of categorizing evolu-
tion transformations (improving the user's ability to locate appropriate transformations,
and understand their effects), and by integrating the transformations with the various
user-oriented presentations (making presentations two-way, i.e., not only displays of infor-
mation to the user, but manipulable objects through which the user can direct changes
to the requirements/specification under construction). Finally, we examine how ARIES's
other capabilities come into play as part of the above activities, and automated support
for the addition of new transformations to the library.

7.1 Why evolution occurs

There are many reasons why evolution is a natural and unavoidable-indeed, frequent-
activity in the course of requirements acquisition and specification construction. This was

115

recognized to hold for specifications at the start of the KBSA project; we continue to believe
this to be so, and, in the course of merging specification construction with requirements
acquisition, we see evolution to be pervasive throughout this combined activity. We outline
our justifications for these beliefs below.

Incremental specification

Any formal specification of a large and complex system will itself be large and com-
plex, in spite of the advantages provided by specification languages (provided by their
freedoms from various implementation concerns). Thus it is unreasonable to expect
that a formal specification can be constructed completely and correctly in one mon-
strous step (the so-called "big-bang" fallacy of specification construction). Instead,
large specifications are best constructed and explained incrementally, in which each
successive version evolves from its predecessor in some manner. It is important to
realize that each stage of such an incremental development need not be constrained
to be a pure refinement of the previous stage. As Balzer has pointed out [6], it is
often useful useful to begin by telling the equivalent of "white lies"--incorrect but
simplifying assumptions-and later retracting these, once the developer/reader has
thoroughly understood the simpler version, and is ready for an incremental update.
The common practice of first defining "normal case" behavior and then introducing
exceptional cases is an instance of this principle.

* Compromise of ideals

It is useful to allow the expression of, and reasoning with, idealized requirements,
even if they are unattainable with present (or any imaginable) technology, are mu-
tually contradictory, etc. This is so not only to permit incremental specification
(as discussed in the previous item), but also to record those ideals (so that in the
future we may respond to changes to take advantage of any new opportunities to
better satisfy those ideals), and to make them explicit, and thus begin the process
of compromise that will eventually lead to a consistent specification.

It is in this process of compromise that evolution of idealized requirements takes
place.

* Response to feedback

The KBSA approach to software development encourages the early exploration of
users' statements of requirements through the analysis and testing of the specifica-
tions that are constructed to realize those requirements. This feedback will lead to
frequent evolution, i.e., change to those requirements, and the specification(s) that
formalize them.

Longer-term feedback will also continue to occur. While the KBSA approach is in-
tended to improve the quality of the resulting code (especially in reducing the number

116

of changes made in response to the discovery of bugs in the implementation), it will
not eliminate the demand for change once the constructed system has been fielded.
It is inevitable that there will be aspects that the user will wish to change, be they
modifications, extensions, or adaptations of the system to new and unanticipated sit-
uations. A crucial part of the KBSA paradigm is that such changes will not be made
by hand-modification to the final program code, but rather by modifying the require-
merits or specification and rederiving the program code from the evolved specifica-
tion. This is intended to make maintenance a speedier, and less error-prone activity.
Balzer has observed that one consequence of this is that users will likely demand
more changes, once they see the additional flexibility offered by this methodology!
Thus evolution is going to remain a frequent activity, but will involve evolution of
formalized requirements and specifications (the material manipulated by ARIES), not
just the evolution of the final program code.

7.2 Evolution transformations-support for evolution

ARIES, like its predecessor the Specification Assistant, provides evolution transformations
as the unit of support for evolution. The very purpose of evolution transformations is
to elaborate and change specifications in specific ways. Like conventional "correctness-
preserving" transformations (also called "meaning-preserving" transformations), they may
be invoked by the user or by other transformations, and they are executed by a mechanical
transformation system to cause changes to a specification. Correctness-preserving trans-
formations are generally applied to derive efficient implementations from specifications,
keeping the meaning of the specification unchanged; in contrast, our evolution transfor-
mations deliberately change the meaning of specifications. We do, in fact, include some
meaning-preserving transformation in our library, but instead of using them for deriv-
ing efficient implementations, their purpose is either to reorder specifications (for better
presentations), to rewrite specifications into equivalent forms using different language con-
structs, eliminate redundancies, or to make explicit some otherwise implicit features of the
specification. Some of these transformations may also appear in a transformational imple-
mentation system, to be used to replace high-level specification constructs with low-level
implementation ones.

The use of mechanized transformations provides the advantages of:

* Mechanical assistance-the burden of applying transformations is removed from the
analyst, thus saving the analyst effort, and reducing the likelihood of error (when
contrasted with the situation in which the analyst would have to conduct the changes
by hand), and

117

* Traceability-the record of transformations provides traceability between the original
form of requriements and their ultimate realization (perhaps in a compromised form)
in the final specification.

These advantages were demonstrated in the development of specifications within the Speci-
fication Assistant. ARIES, in its role of supporting the seamless process of both requirements
acquisition and specification construction, uses evolution transformations throughout. In
the section that follows we examine how ARIES has addressed the problems of finding and
applying evolution transformations.

7.3 Advances in ARIES with respect to evolution

7.3.1 Recap: the state of evolution transformations in the Spec-
ification Assistant

We began our exploration of evolution transformations by concentrating on two problems,
a patient monitoring system and an air traffic control system, and worked out development
scenarios by hand to discover what transformations were necessary. We then implemented
general-purpose versions of those transformations, which could be applied to achieve those
developments mechanically. The result of this exploration was a sizable library containing
around 100 transformations, of a wide variety of types. This library formed part of the
Specification Assistant. It was significantly more extensive than similar libraries devel-
oped by Balzer [5] and Fickas [25]. And while other researchers have studied evolution
steps similar to those captured by our transformations [59, 42], they have not developed
transformati ,ns to enact these steps.

7.3.2 ARIES advances

The ARIES system expands on the Specification Assistant work in several ways:

* Improved coverage. The transformation library of the Specification Assistant has
been expanded so as to be applicable to a wide range of specifications.

* Characterization of transformations. The Specification Assistant organized its li-
brary of transformations into several coarsely defined groups. While this provided
some help to the user in finding appropriate transformations from the library, it
showed signs of trouble in scaling up to a larger library. In ARIES, we have worked to

118

characterize transformations in terms of their effects on several semantic dimensions.
This is beneficial both to be able to assess the coverage provided by the library (i.e.,
to determine what range of transformations are required in the library in order for it
to support a wide range of analyst activities), and to facilitate retrieval from the li-
brary (i.e., to find the appropriate transformation to make some desired specification
change).

" Broader range of applicability

Whereas the Specification Assistant operated only on specifications expressed in the
specification language Gist [28], ARIES supports a wide spectrum of other notations,
including hypertext, flow diagrams, state transition diagrams, and domain-specific
notations. We needed a common internal representation capturing the semantics of
all of these notations. By applying the transformations to the internal representation,
the same transformation library can be applied to specifications expressed in a variety
of different notations.

" Retrieval of transformations through direct manipulation of presentations

The analyst views the requirements information accumulated within ARIES through
presentations. ARIES's mechanisms make it possible for the analyst not only to view
information this way, but also to change it. Through direct manipulation of the
presented form of information, the analyst indicates to the system the nature of
the change that he/she desires to conduct, and the system is then able to retrieve
those evolution transformations that can or might achieve that change. Furthermore,
ARIES organizes the retrieved transformations into a specialization hierarchy, so that
if the application of one of the retrieved transformation would achieve a superset of
the changes that another retrieved transformation would achieve, then the latter will
be shown as a specialization of the former. The net result is to significantly ease the
analyst's task of finding the right transformation to apply.

For the purposes of building and evolving the ARIES system itself, we have avoided hard-
wiring manipulations at the presentation level to modifications to the underlying repre-
sentation. Instead, we have followed a more staged approach that is far more flexible,
permitting the rapid addition of new presentations and their associated modifications.
The fundamentals of our approach are as follows:

Effect descriptions - characterizations of modifications in terms of their "effects" on
each of several semantic dimensions. ARIES matches the effects of the desired mod-
ification against the effects achieved by the available evolution transformations in
order to select the appropriate transformations.

119

Linking presentations to effects - each presentation suggests certain obvious and in-
tuitive manipulations to the information being presented. These manipulations are
linked to the corresponding effects, and these in turn are used to select transforma-
tions.

Linking evolution transformations to effects - each evolution transformation is char-
acterized by the effects that it achieves. ARIES analyzes evolution transformations to
determine some of their effects. This analysis is, when necessary, supplemented by
information from ARIES developers.

The remaining sections of this chapter detail ARIES's mechanisms that make this possible:
Section 7.4 describes the dimensions of semantic properties, how they are represented, and
how changes are expressed in terms of them; Section 7.5 describes how the transformations
are linked to effects (expressed in terms of changes to semantic dimensions), and how direct
manipulations to presentations are linked to effects.

7.4 Semantic properties and effects

7.4.1 Dimensions of semantic properties

In our studies of specification evolution, we found the following dimensions of semantic
properties to be important for characterizing the changes that occur:

* the modular organization of the specification, i.e., which concepts are components of
which folders, and which folders inherit from which folders,

e the entity-relationship model defined in the specification, i.e., for each type what
relations may hold for it, what attributes it can have, what generalizations and
specializations are defined, and what instances are known,

e information flow links, indicating for each process or event what external information
it accesses, what facts about the world it may change, and what values are computed
and supplied,

* control flow links, indicating what process steps must follow a given process step and
what process steps are substeps of a given process step,

e state description links, associating statements and events, on one hand, with precon-
ditions and postconditions that must hold in the states before and after execution,
respectively.

120

Each semantic dimension is modeled as an abstraction of the underlying representation,
in the manner described in Section 3.5.1. Each abstraction consists of a collection of rela-
tions, each representing one aspect of the dimension described above. Thus, for exal ple,
the entity-relationship model is captured using the relations specialization-of, parameter-of,
type-of, instance-of, and attribute-of. This model makes distinctions that are missing from
many of the notations being supported. Thus E-R diagrams typically show specialization-of
as just another relation in the application's data model. Here it treated not as part of the
application's data model but as part of ARIES's language for structuring data models.

This semantic model captures information beyond what conventional notations typically
show; however, conventional diagrams can be easily generalized to capture such informa-
tion. For example, E-R diagrams are generally used only to show relationships among
types, whereas our entity-relationship dimension also includes instances. Yet E-R-style
diagrams could also be used to describe instances. The information flow dimension gen-
eralizes conventional data flow; it captures the flow of information that is not mediated
by conventional message passing. Thus we can describe air traffic control as monitoring
aircraft locations and changing them without implying that the aircraft are somehow send-
ing location messages to the air trfaffic control system. Still, we could easily generalize
conventional data flow diagrams to show such abstract information flow.

7.4.2 Generic network modification operations

Because we represent each semantic dimension as a semantic network of nodes and rela-
tions, we are able to identify a number of generic network modification operations which
apply to any semantic network, and thus to each semantic dimension. The most primitive
network manipulation operations are insert and remove for adding and deleting links, and
create and destroy for creating and destroying objects. The meaning of an operation de-
pends on the semantic dimension to which it is applied and the relation being affected; thus
for example, the operation of adding a link in the information-flow dimension could mean
making a process access information about an external object, whereas the same operation
in the entity-relationship dimension could mean making one type become a specialization
of another.

In addition to these primitive operations, we have identified a number of frequently recur-
ring complex operations:

"* update - remove a link from one node and add it to another node.

"* promote - a specialization of update. If one of the linked nodes is part of an ordered
lattice, then update the link so that it connects a higher node in the lattice.

"* demote - the opposite of promote. Move the link to a lower node in the lattice.

121

"* splice - remove a link from between two nodes A and B, and reroute the connection
through a third node, C, so that A is linked to C and C is linked to B.

"* split - replace a node A with two links B and C, linked together in some fashion,
and where B and C divide between them the attributes of A.

"* join - replace two nodes A and B with a node C, merging their attributes.

7.4.3 Examples of dimensions of semantic properties and changes
within them

We sketch some instances of semantic properties that arise in our specification of air traffic
control. The purpose of these examples is to show how information is actually captured
along the different dimensions outlined above, and to illustrate the semantic distinctions
that are made along each dimension.

* modular organization: the concepts of mass, direction, mobile-object, location are
components of iie physical-object folder. The concepts of aircraft, airport, control-
tower etc. are components of the atc-model folder. Three folders are inherited-folders
of the atc-system folder: 1) atc-model, containing objects and activities common to
air traffic control, 2) system, containing definitions of various categories of systems,
e.g., signal-processing-system, and 3) upper-model, a collection of generic concepts for
modeling the semantics of natural language, defined by the PENMAN project [8]. The
atc-model folder in turn has nine inherited-folders, including physical-objects, vehicle,
system, and upper-model. The concepts in a folder may be defined in terms of concepts
inherited from other folders, e.g., the ate-model's air-location is defined in terms of
the physical-object's location.

e entity-relationship model: the specialization relationship is used to express the
type hierarchy, e.g., aircraft is a specialization of vehicle which in turn is a specialization
of mobile-object. Similarly, the instance-of relationship is used to express which types
an object belongs to, e.g., the baitcc-facility is an instance-of the type atc-facility
(BARTCC, Berlin Air Route Traffic Control Center, is the acronym for one of the air
traffic control systems whose requirements we have been modeling).

* information flow: as was discussed earlier, information flow comprises the 6ransfer
of information (accesses to and modifications of information) between components,
e.g., idealized versions of the ensure-on-course event access and modify aircraft lo-
cations, hence both kinds of information flow links, accesses-fact and modifies-fact
hold between ensure-on-course and aircraft. Later on, some of these information flows
are transformed into concrete data flows. The data-flow relationship expresses the

122

flow of data between components, e.g., from the radar process to the track-correlation
function, and from the track-correlation function to the ensure-on-course process.

" control flow: there are two kinds of control flow links, control-substep and control-
successor. The former captures the flow of control when an event consists of a series of
steps; the relationship holds between the event and its substeps. For example, track-
correlation has as a substep the operation to update an individual track. Control-
successor holds between actions that are in temporal sequence: for example, ensure-
on-course is activated whenever track-correlation updates tracks. A third category of
control link, describing causal relationship between events, will need to be included
as well, along the lines that Yue developed for the Specification Assistant [80].

" state description: links of this kind are between events and their pre- and post-
conditions, e.g., a precondition to ensure-on-course taking action is that an aircraft
be off course, and its postcondition is that the aircraft is back on course (at least
in the early versions of the specification; in later versions its postcondition is that it
has triggered the activity of notifying the controller, which ultimately will cause the
aircraft to return to its course).

The meaning of a modification operation will depend on the semantic dimension to which
it is applied.

" In the entity-relationship dimension, to insert a specialization-of link means to assert
that one concept is a specialization of another, e.g., that the type surveillance-aircraft
is a specialization of the type aircraft.

" In the information flow dimension to remove an accesses-fact link means to remove
accesses to a category of external information from a component, e.g., to remove
access by atc-system to the aircrafts' location-of relation.

"* For the specialization links of the entity-relationship dimension, to splice means to as-
sert that some type is intermediary to two other types in the specialization hierarchy,
e.g., splicing military-aircraft between aircraft and surveillance aircraft.

"* In the information flow dimension, to splice means to reroute an information flow
between two components through an intermediary, e.g., splicing track between aircraft
and the atc-system.

"* In the control flow dimension, to splice means to re-route a direct control flow be-
tween two components through an intermediary, e.g., in the idealized versions of the
specification there would be a direct control flow from an aircraft's maneuver process
to ATC's ensure-on-course process, whereas in later versions this direct link would
have been spliced through the track-correlation process.

123

S............ ~~~....

I-lc des d ga-)- m -

by name
Modify event-declaration node
Join event-declaration node
Split event-declaration node

Destroy event-declaration node
Demote generalization link
Promote generalization link
Remove generalization link
Insert generalization link
Update generalization link

Figure 7.1: Menu of modifications to the event-taxonomy presentation

7.5 Transformations, effects and semantic dimensions

7.5.1 Linking manipulations within presentations to effects

The modifications that are appropriate to each presentation are linked to the corresponding
effects on the system's semantic dimensions, which in turn are used to select appropriate
transformations. There are two ways that an analyst can indicate a desired effect for a
given presentation. One method is to click on one of the gesture buttons on the left side
of the presentation, labeled "MODIFY," "JOIN," "SPLIT," etc. The other mothod is to
click right with the mouse on the object to be modified. Mousing on the object causes a
menu of options to appear. The list of options is essentially the same as the list of gestures,
except that the menu options indicate the types of nodes and links being operated on. For
example, 7.5.1 shows the menu that comes up when one clicks on an object in an event
taxonomy presentation. Observe that the menu reflects the underlying representation, as
reflected in its stating the types of the nodes and links (event-declaration and generalization).

Once a desired effect is indicated, the presentation system constructs an effect description
describing it. Effect descriptions consist of a generic modification operation together with a
list of arguments. Arguments may be names of types and relations in the ARIES Metamodel,
or specific instances of specification objects. For example, the effect description indicating
that an event declaration is to be created consists of the operation create and one argument,
the Metamodel type event-declaration. An attempt to delete the definition of handoff from
a specification is indicated by an effect description consisting of the operation destroy and
one argument, the event declaration named handoff.

The effect description is then passed to the transformation library retrieval mechanism to
find all transformations matching the effect description. This retrieval mechanism attempts
to classify the effect description against the effect descriptions of each transformation, to

124

ADD-EVENT-DECLARATION
DEFI NE-STD-TRPNSITION-AND-CRERTE-SPEC IFIC-EVENT

DEFINE"-AD-CHECK-ENABLI NG-STATE
DEFI NE-STD-TRANSITION-AND-CREATE-GENERAL-EVENT
DEFINE-EVENT-TO-ASSERT-RELATION
DEFINE-RELATION-VIA-EVENTS
INTERPOSE-REQUEST
IMPLICIT->EXPLICIT
MAINTAIN-INVARIANT-REACTIVELY
STATEMENT-->-PROCEDURE

DEFI NE-EVENT-TO-RETRACT-RELATION
INSTALL-PROTOCOL
SPLICE-STD-IRANSIT ION-MAKE-G.NERAL-EVENT-IF-NE

Figure 7.2: Menu of evolution transformations retrieved in response to selecting Create
event-declaration node

see if the effects of the transformation subssume the effect indicated by the analyst. In
order to su)sulnie, the transformation must be guaranteed to achieve the desired result,
when applied to the object(s) or type(s) indicated by the user. This determination must be
performed on the specific objects being affected-it is sometimes the case that a transfor-
niation will not achieve the desired effect on any possible object that the presentation can
display, but will achieve it on the specific objects the analyst selects. For example, trans-
formations that operate on state transitions may be applicable to a given event declaration
if the event declaration the analyst selects happens to be a state transition.

The product of the retrieval is a set of transformations which achieve the desired effect.
Typically there is one transformation that matches the description most closely, and other
transformations that are specializations of it. The set of transformations is presented to
the analyst in a specialization hierarchy, so that the analyst can more readily see the
relationshipls between the transformations. For example, selection of the Create event-
declaration node item causes the system to produce the menu of evolution transformations
shown in Figure 7.5.1.

The rationale for this approach is the assumption that often analysts will have a more
complex modification in mind than a single edit to a single diagram. By showing the
analyst more powerful transformations that match the description, the analyst may come
across a transformation that more closely matches the true intended change.

The reliance on this subsumption-based approach makes it unnecessary to individually pro-
gram menus of tranisformations for each presentation. Furthermore, the menus generated
are more sl)ecific than any preprogrammed set of menus can be, because they represent
the set of transformations that can be applied to the object selected by the analyst, rather
than the set of transformations that can apply to any object of a given type.

125

7.5.2 Linking evolution transformations to effects

The principal effects of each transformation are explicitly recorded as part of the trans-
formation definition. Each effect is a generic operation applied to a combination of the
transformation's inputs, outputs, and other related objects which are not directly input
or output. The transformation retrieval process matches each recorded effect against the
desired effect indicated by the analyst in order to determine if the transformation is appli-
cable.

In general, transformations can have two kinds of effects: main effects and possible effects.
Main effects are guaranteed to result from transformation application (assuming that the
goal of the transformation is not already satisfied). Possible effects may or may not result,
depending upon the particular situation in which the transformation is applied.

ARIES analysis tools are able to partially analyze evolution transformations to determine
their effects. This analysis is incomplete: is not intended to deduce all the possible effects
of a transformation, but rather is intended to deduce particular classes of effects. These
deductions are correct for typical transformations that we wish to encode. It is possible
to imagine pathological cases where the deductions would be incorrect, but these cases do
not occur in practice, so we have not been overly concerned with them.

The effect analysis process proceeds as follows. The analyzer scans the body of the trans-
formation, looking for statements or expressions whose effects it can infer. For each of a
variety of Common Lisp constructs, it has a rule for how the effects of the subexpressions of
the construct contribute to the effects of the construct as a whole. For example, in the case
of the Lisp progn expression the effect of the progn is taken to be the union of the effects
of the individual statements in the progn statement. AP5 assertions and retractions on the
knowledge base can be interpreted directly as insert and remove operations. If a trans-
formation invokes another transformation, the effects of the invoked transformation are
added to the effects of the invoking transformation. The analysis is performed repeatedly
until there are no new effects added to any transformation.

Conditional constructs, such as if statements and loops, are handled differently. The then
and else clauses of an if statement are interpreted as possibly executing if the surrounding
if statement executes. Thus the main effects of the embedded clauses become possible
effects. In a like manner, the effects of statements within loops are viewed as possible
effects. The exception to this rule is if both the then clause and the else clause are seen
to have effects in common. In that case, main effects are inferred for the if statement as a
whole.

This approach has certain limitations, which make it an aid to transformation classification
rather than an a fully automatic classifier. If the analyzer cannot recognize a construct, it
cannot deduce effects for it. Also, the analyzer cannot deduce effects which are logically

126

implied by the observed effects. As a result, the effects that are automatically identifiable
are a subset of the effects that are actually implied. However, in practice the great majority
of effects can be inferred automatically.

A more serious potential problem can arise if the effects of subparts of a transformation
interfere in some way. For example, if a transformation creates a specification component
and then deletes it, the effect analyzer will fail to recognize that one effect undoes the other.
However, this state of affairs is unlikely to occur in practice: well-formed transformations
do not create structure and then destroy it. The simplifying assumptions in the effect
analyzer about how transformation effects propagate are quite acceptable, although they
would most certainly not hold for arbitrary Common Lisp programs.

ARIES also places its transformations into a specialization hierarchy, in which one transfor-
mation is more specialized than another if the set of changes that it causes is a superset of
the set of changes the other causes. Again, this relies upon a combination of automated
analysis supplemented by analyst-provided assertions to fill out this hierarchy. The de-
veloper asserts the specialization relationships, and the system verifies that all effects are
subsumed. As was indicated earlier, the key to making this possible is the fact that ARIES
represents information about itself, in particular, about its library of transformations.

7.6 Related work

The evolutionary approach to requirements specification has a numbor of precursors.
Burstall and Goguen argued that complex specifications should be put together from sim-
ple ones, and developed their language CLEAR to provide a mathematical foundation for
this construction process [12]. They recognized that the construction process itself has
structure, employs a number of repeatedly used operations, and is worthy of explicit for-
malization and support-a position that we agree with wholeheartedly.

Goldman observed that natural language descriptions of complex tasks often incorporate
an evolutionary vein-the final description can be viewed as an elaboration of some simpler
description, itself the elaboration of a yet simpler description, etc., back to some description
deemed sufficiently simple to be comprehended from a non-evolutionary description [29].
He identified three "dimensions" of changes between successive descriptions: structural-
concerning the amount of detail the specification reveals about each individual state of the
process, temporal-concerning the amount of change between successive states revealed by
the specification, and coverage-concerning the range of possible behaviors permitted by a
specification. We were motivated by these observations about description to try to apply
such an evolutionary approach to the construction of specifications.

Fickas suggested the application of an AI problem-solving approach to specification con-

127

struction [24]. Fundamental to his approach is tile notion that the steps of the construction
process can be viewed as the primitive operations of a more general problem-solving pro-
cess, and are hence ultimately mechanizable. Continuing work in this direction is reported
in [68] and [2].

Karen Huff has developed a software process modeling and planning system that is in some
ways similar to ours [40]. Her GRAPPLE language for defining planning operators influenced
our representation of evolution transformations. Conversely, her meta-operators applying
to process plans were influenced by our work on evolution transformations.

Kelly and Nonnenmann's WATSON system [51] constructs formal specifications of telephone
system behavior from informal scenarios expressed in natural language. Their system
formalizes the scenarios and then attempts to incrementally generalize the scenario in order
to produce a finite-state machine. Their system is able to assume significant initiative in
the formalization process, because the domain of interest, telephony, is highly constrained,
and because the programs being specified, call control features, are relatively small. Our
work is concerned with larger, less constrained design problems, where greater analyst
involvement is needed. It is afso more aimed toward the construction of specific behaviors
starting from more general rcequirements. Nevertheless, we have recognized for some time
that acquisition from scenarios is a useful complement to the work we are doing, in highly
constrained design situations [43]. We have so far employed scenarios mainly in support
of validation and debugging of specifications, as discussed in Section 6.5.

The work on classification of evolution transformations according to effects is closely related
to current efforts in applying classification reasoners to software engineering. Two systems
that are the most advanced in this area are the LaSSIE[20] and Comet systems[55]. Like
ARIES, each one attempts to classify software components based on partial descriptions
of functionality. Of the two, Comet has the most advanced approach, and the one most
similar to ARIES, in that it employs structured descriptions of behavior. These descriptions
are more closely tied to the structural form of the code, however, instead of the overall
effect of the code.

7.7 Examples of evolution transformations

Figure 7.3 is a summarization presentation of one evolution transformation. Each of the
180 transformations of the ARIES system contains this form of information. The informa-
tion helps analysts in several ways. The concept description appears in the ARIES-Manager
window, when the analyst moves the mouse over a window or menu item associated with
the transformation. Specialization information relates this transformation to others. Input
parameters and output parameters describe parameter types and provide informal docu-

128

nientation which c'xI be' displayed to thle ItIllvyst est~illisliiig plraniieters for au invocation
of the transfornijt iou. Mauin ieffects aiild possible ,flects tre used to dleteruiune if a particular
transformation will modify the visible part of the specification.

Since transformations are represented internally as event declarations, ARIES functionality
that applies to event declarations can be applied to transformations as well. This can
be crucial for ARIES developers requiring guidance in future development of the system
and for end-users demanding accountability for ARIES-initiated actions. Figure 7.3 is one
example of this. Likewise, hierarchies of transformations can be presented using the event
taxonomy presentatoin, as in Figure 7.4. This figure shows specializations of the trans-
formation add-relation-with-parameters, a transformation which defines a new relation with
given parameters. A number of specializations are shown, including the transformations
that define states in state transition diagrams. This makes sense because states are a kind
of relation in the ARIEIS model.

129

1-5 INFORMATION

Infornation

DEFINESTrDTRAJVSTON0NANDCREATEGENERALEVENT: Transformation
Concept description:

Define a new state transition and create most Saneral event that can effect the state chaine
Specialization of.

ADDEVENTDECLARAT7ON
DEFINESTDTRANSiO7ON

Input parameters:
STD: STD:

state transition diagram
Name of new transition: UNRESERVED WORD
STAR7STATE: STDSTATE:

Start state for the transition
ENDSTATE: STDWTATE:

End state for the transition
REGION: FOLDER

Output parameters: TRANSiTiON:
New transition

Goal: NIL
Main effects:

The relation STATECHANGEDESCRIPTFON is asserted between
STD and TRANSITiON.

The relation STDCOMPONEN1S is asserted between
STD and TRANSITION.

The relation EXPORTED is asserted between
REGION and an EVENTDECLARAT1ON.

The relation POSTCONDMT1ON is asserted between
an EVENTDECLARAT7ON and a PREDICATE.

A PARAMETER is created.
An EVENTDECLARATZON is created.
TRANITION becomes a STDTRANSTMON.
An EVENT is created.

Quit Mark Edit

Figure 7.3: An example of an evolution transformation

130

r[) Event Taxonomy

Event Taxonomy for ADD-RELATION-WITH-PARAMETERS
ESTU•SI

MODIFY

JOIN

SPLIT

DESTRO3Y

CREATE

DEMOTE

PROMOTEI

INSERT

UPDATE I e "A" I , ,P.M.t,, U t•-A-Lme l~im.d.-T-,"-mizoogy Alt ... ,atiw..-Vie .,tr• ~

Figure 7.4: A taxonomy of transformations

131

Chapter 8

Future Directions

In this chapter we present several focal points for extending the work we have done on
ARIES.

8.1 Improved acquisition and presentation modes

The current presentation system in ARIES is highly extensible. It is possible to introduce
new presentations into the system will little effort, and we expect that more such presen-
tations will need to be included. Feedback from potential users indicates that at the very
least there needs to be more support for diagrams familiar to system engineers, such as
conventional data flow diagrams and structure charts. Such extensions to not constitute
major technical difficulties, but would greatly contribute to user acceptance.

A problem with the current system, however, is that it depends upon CLUE. The advantages
of CLUE are that it is publically available at no cost, and it runs on a variety of hardware
platforms. As a result, we were able to field versions of ARIES both on Lisp machines
and on Unix workstations. The disadvantages of CLUE are that it is no longer supported
by Texas Instruments, and it is written in Lisp. The use of Lisp for interface processing
substantially degrades performance. Current interface builders are implemented in C or
C++ instead of Lisp. In order to achieve acceptable performance for the presentation
system, some reimplementation in C++ is likely to be necessary.

The ARIES presentation system meets the functional goals originally planned for it. Now
that we have this functionality in hand, though, we can now identify new capabilities that
would be desirable. These are outlined below.

132

8.1.1 Domain-specific acquisition and presentation

The presentations developed in ARIES up to now are all domain-independent. We would
like in addition to be able to make use of domain-specific presentations for requirements
acquisition. For example, we have looked at presentations of traffic-lanes, moving vehicles,
and traffic lights as a means of capturing road traffic control specification. Depictions of
air spaces are useful as background for describing air traffic control requirements. Lorna
Zorman at ISI has made some initial progress in investigating the use of domain-specific
presentations for requirements acquisition.

8.1.2 Acquisition using demonstration examples

Domain-specific presentations make requirements easier to understand, especially for do-
main experts. The use of examples or scenarios would further facilitate requirements
acquisition. As described in Chapter 6, we already make use of scenarios to validate spec-
ifications. Acquisition via scenarios would also be useful as well. This is particularly
important in the context of domain-specific presentations, as such presentations are most
readily used as a medium for sketching out examples.

8.2 Representation issues

The representation framework in ARIES permits the definition of specialized abstractions,
which in turn support the various presentations. Defining clean relational abstraction
layers takes work, and not as many abstractions have been defined as would be useful.
Some defined relations do not yet have add and delete methods defined, particularly when
we have not yet determined what impact an update has on other relations. Information
flow is one example of this. We are confident that many of such limitations can be gradually
overcome in time.

An important step to take in this direction would be the development of a sublanguage for
modular specification consistent with the underlying representations for types, relations,
events, and invariants. While modularity is a strong component of many system analysis
methodologies particularly useful in supporting teams of analysts, it will take some effort
to map this notion of modularity onto specification level descriptions of environments and
systems. We describe two cases in the paragraphs below.

133

8.2.1 Modularity for information flow diagrams

Event decomposition and event interdependency can be significantly different from func-
tional decomposition and data flow. Recall that events have duration, possibly spanning
multiple states in succession, and involving multiple entities of the system. Events can have
preconditions, postconditions, and methods consisting of procedural steps. They may be
explicitly activated by other events, or may occur spontaneously when their preconditions
are met. They may have inputs and outputs. However, event definitions can affect the
state of the system in ways other than generating outputs: they can assert and remove
relations between objects, and create and destroy objects.

Our current abstractions capture four different notions of decomposition-part, physical
component, logical component, and event. Part decomposition is simply a way of saying
that the decomposition could be either physical or logical but either the analyst has not
committed (in acquisition mode) or does not care (in review mode). Event decomposition
is defined by the steps of the event body. When analysts state these steps explicitly (e.g.,
as in a recipe), ARIES can deduce the logical component view. However, if analysts do not
make these steps explicit, it can be very difficult to automatically extract a decomposi-
tion. Analysts have difficulty in modularizing a monolithic description; hence ARIES will
not easily accomplish this task automatically. Moreover, an analyst's way of viewing a
decomposition of an event may not even come close to the notion of logical component of
a system. The cyc ontology contains a very rich description of both spatial and temporal
decomposition. From a temporal viewpoint, steps in an event are often smaller snapshots
of the same event type and are not logical components in the system engineering sense.
We advocate developing ARIES abstractions along the same lines. From these abstractions,
ARIES would facilitate specification of many different kinds of event decomposition.

Even when analysts make logical decomposition strategies explicit, we still have problems
in determining the module interconnections. In our model, analysts describe behavior
through assertions which change participation in relations. For example, a move event re-
sults in a change to the location-of relation. It may not be appropriate to model location-of
as data flow, or the location-of relation may be best associated with a specific submod-
ule. We need to develop constraints which hold between a statement of information flow
among modules and the collection of database assertions which describe the behavior of
the modules. Automatic derivation of such constraints can be error-prone.

8.2.2 Modularity for state transition diagrams

The situation is much better for state transition abstractions, but there is still some work
to be done. We need to extend our initial work on the propagation of change to the

134

specification when parts of thle specification has b)een captured through non-state-transition
formats.

Consider the case of an analyst modifying a state transition diagram of the enumerated
relation track-status. This relation represents the various states of an aircraft with re-
spect to an automatic tracking subsystem. The initial specification revolves around two
statements:

type status := 'untracked, 'tracked;
relation track-status(aircraft,status)

If the analyst requests that "tracked" be split into "normal" and "coast," ARIES will invoke
the split-std-state transformation which copies the old state and establishes the conditions
for each new state to hold. This is equivalent to a specification with the following definition
of status:

type status := 'untracked, 'normal, 'coast

On the other hand, if the analyst wishes to view the specification in more detail-opening
up the "tracked" state-then a transformation is not called for. Rather, ARIES should
change to a new presentation-a state transition diagram presentation of a new relation
such as the track-status-1 relation below.

type status := 'untracked, 'tracked;
type statusl := 'untracked, 'normal 'coast;
relation track-status-1(aircraft,status-1);
invariant ways- to-be-tracked forall(ac:aircraft)

track-status(ac,tracked) iff
track-status-i (ac,normal) or track-status- I (accoast)

Note, however, that ARIES can only derive the relationship between track-status and track-
status-1 (i.e., track-status-1 captures a specific decomposition of a state-relation associated
with track-status) by examining the invariant-leading to potentially intractable reasoning.

One would prefer analysts to be able to state this decomposition explicitly, allowing ARIES

to use this information to help focus its reasoning. When we put this decomposition feature
into place, the ARIES prototype will deduce the intended state transition diagram from a
request to open an existing state and be able to support decomposition of states.

135

8.3 Support for cooperation and reuse

ARIES goes further than previous systems in supporting cooperation within software projects,
and supporting reuse across projects. Still, there is much work that remains to be done in
this area. The following are some opportunities that the ARIES approach makes possible.

8.3.1 Merging workproducts and other CSCW support

Separate development of different requirements areas inevitably leads to inconsistencies.
These inconsistencies are a natural consequence of allowing analysts to focus on different
concerns individually. Although consistency is an important goal for the requirements pro-
cess to achieve, we have concluded that it cannot be guaranteed and maintained through-
out the requirements analysis I)rocess without forcing analysts to constantly compare their
requirements descriptions against each other. Therefore, consistency must be achieved
gradually, at an appropriate point in the specification development process. Nevertheless,
it may not be possible to recognize all inconsistencies within a system description.

One technique that we have explored to facilitate reconciliation is the process of merg-
ing parallel elaborations [22]. Feather analyzed a restricted case of reconciliation, where
different views of the specification are all derived by transformation from a common root
specification, which describes the system in a very abstract way. His technique is to attempt
to replay the various transformations in a linear sequence. By analyzing the transforma-
tions, their applicability conditions, and what they apply to, it is possible in many cases to
determine automatically whether transformations applied to different views may interfere
with each other.

The approach that we envision for ARIES centers of gradual elimination of differences be-
tween the conceptual models, regardless of their origin. If two members of an analysis
team are using conflicting definitions of the same concept, they will each employ transfor-
mations step by step to eliminate those differences. In some cases this will involve having
each analyst distribute the transformations that they employed so that the other analysts
can employ them as well. As differences are resolved, specification components can be
gradually promoted to the project-shared folders. In those cases where an analyst has
employed a model that is more detailed than necessary for the shared model, abstraction
transformations may be employed to reduce the detail to the level shared throughout the
project.

136

8.3.2 Reuse constructions and retrieval

The folder mechanisms that we have built offer significant support in subdividing large
specifications into manageable reusable pieces and segmenting knowledge into self-contained
internally consistent units. Retrieval, understanding, and construction must rely on in-
terconnections within the specifications themselves with little support at the folder level.
Folders help manage the namespace but provide little guidance for actual specification
construction via reusable components.

While we have concentrated mostly on the composition, understanding, and modification
issues of reuse and have only rudimentary retrieval mechanisms in place, the underlying
data structures could be used to support various deep retrieval approaches such as retrieval
by reformulation (see [62], [63], [27]). In particular, the underlying representation for
concepts serves as a foundation for automated classification--concepts in different folders
are related to each other in a classification hierarchy.

Some additional structure at the folder level may also be helpful. We have observed that
additional structure may be desirable in order to capture a folder developer's intentions
for folder dependency. An approach taken by Larch provides an "assumes" link between
specification fragments (referred to as traits in Larch). If a developer declares that a first
trait is assumed by a second, then analysts know that the operators of the first will be
additionally constrained in the second and that the full behavior is contained in both.
Additional experimentation in the ARIES setting will be needed before committing to this
type of folder interconnection.

8.3.3 Folder structuring and heterogeneous knowledge represen-
tations

One area that we have just started to explore is the use of folders to support the integration
of heterogeneous representations. By "heterogeneous" we mean knowledge bases that were
developed by different developers, either as part of different knowledge bases or as parts
of the same knowledge base. In our work heterogeneous knowledge bases arise for two
reasons. One reason is that we want to be able to draw on existing knowledge bases
such as the Penman Upper Model, or existing knowledge bases developed in air traffic
control, in order to lessen the work required to build a sizeable knowledge base. When
we incorporated the Penman Upper Model into ARIES, we found inconsistencies between
it and knowledge captured in other folders, that needed to be resolved. Another cause for
heterogeneous knowledge representations is when multiple analysts develop models semi-
independently, and then try to merge them back together. Such integration issues arise
inevitably when developing large, reusable knowledge bases.

137

For example, one knowledge base may define physical-object as a natural kind with moving-
object and stationary-object as subtypes. In a second knowledge base, entity is the upper-
most concept. Simply declaring that physical-object is a kind of entity is an intrusive action
on the first knowledge base-sound inferences may no longer apply. With a folder struc-
ture in place other less intrusive methods are possible. For example, in keeping with the
package metaphor, we are interested in providing shadowing support which would allow a
folder developer to create and use a new folder which shadows terms or even entire folders.
In this shadowing folder, a physical-object can be redefined as an entity which includes all
attributes of the original notion. When an analyst uses such a shadowing folder, physical-
object specifications would inherit all the properties of entity and the original definition,
yet there is no modification to the original knowledge base and other analysts can freely
use it and have confidence in its guarantees.

This work should be seen as complementary to other work on hybrid knowledge represen-
tation, where cooperating decision procedures are defined between individual knowledge
bases. Examples include [60], [50].

8.4 Additional intelligent assistance

ARIES plays a critiquing role in the specification evolution process. Constraint propagation
mechanisms detect inconsistencies among nonfunctional properties. Evolution transforma-
tions have pre-conditions which are checked to see if the transformation can be applied and
methods which propagate effects throughout the specification. There are many opportu-
nities however for building stronger critiquing capabilities. Transformation pre-conditions
can be strengthened and transformation effects can be increased to provide more substan-
tial critiquing capabilities. We can illustrate the issue with one example requiring the
interaction of transformations with domain-specific information. States in a state tran-
sition diagram should be mutually exclusive and collectively exhaustive (at least when a
state transition diagram is in its final form). There are a number of stereotypical situations
in which one state contains another (e.g., spatial inclusion comes up quite frequently in
air traffic control specification) and transformations which check for these situations can
help avoid errors (e.g., a transition which places an aircraft in an internal region with-
out placing it in an enclosing region). Transformations which create states can look for
potential anomalies such as violation of subregion relationships and can assert the nec-
essary invariants which guarantee the exclusiveness of sibling states. We need to encode
domain-specific constraints on typical state relations.

138

8.4.1 Formalism for the specification evolution process

Specification evolution can be viewed as a goal-directed planning process. Evolution trans-
formations (and effect descriptions in particular) are a start at formalizing individual steps.
but they do not formalize the planning aspects of the process. An enriched model including
development goals and evolution plans expressed in a high level transformation formalism
would greatly improve our ability to capture key design decisions, recognize evolution flaws,
offer advice on subsequent development, and greatly assist our ability to manage a replay
of a previous development.

8.4.2 Guidance for non-experts

As we indicated in Section 4.3, analysts who are inexperienced with a knowledge-based tool
or its domain of application require more guidance than experts do. Current support comes
in three principal areas. The Process Model presentation can be used to keep track of the
current task being performed. The instructional mode provides guidance when working
through examples. The transformation retrieval mechanism is used to suggest specialized
transformations that the user may be unaware of when he or she suggests a modification.

There is much more that can and should be done in order to make a knowledge-based
software engineering system such as ARIES easy for novices to use. Instead of simply
guiding users through scripts, the instructional mode in ARIES should be able to guide
the analyst in solving problems. The rudimentary plan recognition facility should be
replaced with something capable of recognizing alternative plans. Ultimately, a deeper
understanding will be needed of the process of requirements analysis in general and in the
context of ARIES in particular. The capabilities of ARIES in the area of training support
are merely suggestive of the kinds of support that will be needed in order for such powerful
tools to become commonly used in practice.

8.5 Evaluation

The above discussion merely offers some suggestions of where further technology develop-
ment might lead. However, the most immediate need at this point is not further techno-
logical development, but evaluation of the existing technology. Formative evaluations with
potential users are indispensable for guiding future development. We need to find out what
the limitations of the system are, and determine which of these limitations are fundamental
ones. ARIES has been developed enough, and the ideas that it embodies have been tested
extensively enough, that such evaluations can be expected to yield useful results.

139

Chapter 9

Acknowledgements

Sections of this report arc adapted from previously published papers by the authors. Sec-
tions of Chapter 1 are adapted from Johnson, Feather, and Harris, "Integrating Domain
Knowledge, Requirements, and Specifications," Journal of Systems Integration 1, Nov.
@1991, pp. 283-320, by permission of Kluwer Academic Publishers, Norwell, MA. Sections
of Chapters 2, 3, and 4 are extended versions of Johnson, Feather, and Harris, "Represen-
tation and Presentation of Requirements Knowledge," submitted to IEEE Transactions
on Software Engineering. Chapter 5 is adapted in part from Johnson and Harris, "Sharing
and Reuse of Requirements Knowledge," Proceedings of the 6th Annual Knowledge-Based
Software Engineering Conference, 01991, pp. 57-66, by permission of IEEE Computer So-
ciety Press, Los Alamnitos, CA. Parts of Chapter 7 are adapted from Johnson and Feather,
"Using Evolution Transformations to Construct Specifications," in Lowry and McCartney,
eds., Automating Software Design, @1991, pp. 65-92, by permission of AAAI Press/The
MIT Press.

Charles Rich has given helpful advice to this project. We would like to acknowledge current
and previous members of the ARIES project: Jay Myers, K. Narayanaswamy, Lorna Zor-
man, Jay Runkel, and Paul Werkowski. This work was sponsored in part by the Air force
Systems Command, Rome Air Development Center, under contracts F30602-85-C-0221
and F30602-89-C-0103. It was also sponsored in part by the Defense Advanced Research
Projects Agency under contract no. NCC-2-520. Views and conclusions contained in this
paper are the authors' and should not be interpreted as representing the official opinion
or policy of the U.S. Government or any agency thereof.

140

Bibliography

[1] A.V. Aho and J.D. Ullman. Principles of Compiler Design. Addison Wesley, Reading,
MA, 1978.

[2] J.S. Anderson and S. Fickas. A proposed perspective shift: Viewing specification
design as a planning problem. In Proceedings of the 5th International Workshop on
Software Specification and Design, Pittsburgh, Pennsylvania, pages 177-184. Com-
puter Society Press of the IEEE, May 1989.

[3] J.S. Anderson and S. Fickas. Reasoning about user goals during specification design:
Extending the planning paradigm. Technical Report CIS-TR-89-01, Univ. of Oregon,
1989.

[41 ASA. Airman's Information Manual. Aviation Supplies and Academics, Seattle, WA,
1989.

[5] R. Balzer. Automated enhancement of knowledge representations. In Proceedings, 9th
International Joint Conference on Artificial Intelligence, August 1985.

[6] R. Balzer. A fifteen-year perspective on automatic programming. IEEE Trans. on
Software Engineering, SE-11(11), 1985.

[7] R. Balzer, D. Cohen, M.S. Feather, N.M. Goldman, W. Swartout, and D.S. Wile.
Operational specification as the basis for specification validation. In Theory and
practice of software technology, pages 21-49. North-Holland, Amsterdam, 1983.

[8] J. Bateman. Upper modeling: Organizing knowledge for natural language processing.
In Proceedings of the 4th Intl. Nat. Lang. Generation Workshop, Pittsburgh, PA, June
1990.

[9] H. Black. TTCP workshop on requirements engineering and rapid prototyping. Tech-
nical report, U.S. Army Communications-Electronics Command, 1989.

[10] A. Borgida, S. Greenspan, and J. Mylopoulos. Knowledge representation as the basis
for requirements specifications. IEEE Computer, 18(4):82-91, 1985.

141

[11] F. P. Brooks. No silver bullet: Essence and accidents of software engineering. Com-
puter, 20(4):10-19, April 1986.

[121 R.M. Burstall and J. Goguen. Putting theories together to make specifications. In Pro-
ceedings of the Fifth International Conference on Artificial Intelligence, pages 1045-
1058, August 1977.

[13] R.H. Campball and A.N. Haberman. The specifications of process synchronization by
path expressions. In Operating Systems, pages 89-102. Springer-Verlag, 1974.

[14] D. Cohen. Symbolic execution of the Gist specification language. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, pages 17-20. IJCAI,
1983.

[15] D. Cohen. AP5 Manual. USC-Information Sciences Institute, June 1989. Draft.

[16] P.R. Cohen and R. Kjeldsen. Information retrieval by constrained spreading activation
in semantic networks. Information Processing and Management, 23:255-268, 1987.

[17] A.M. Davis. Software Requirements Analysis and Specification. Prentice Hall, Engle-
wood Cliffs, N.J., 1990.

[18] J. de Kleer. How circuits work. In Qualitative Reasoning About Physical Systems,
pages 205-280. MIT Press, 1986.

[19] J. de Kleer and J. S. Brown. Qualitative physics based on confluences. In Qualitative
Reasoning About Physical Systems, pages 7-83. MIT Press, 1986.

[20] P. Devanbu, R.J. Brachman, P.G. Selfridge, and B.W. Ballard. LaSSIE: A knowledge-
based software information system. Communications of the ACM, 34(5), 1991.

[21] A. P. Ershov. On mixed computation: Informal account of the strict and polyvariant
computation shemes. In NATO ASI Series, Vol. F14 - Control Flow and Data Flow:
Concepts of Distributed Programming, pages 107-120. Springer-Verlag, 1985.

[22] Martin S. Feather. Constructing specifications by combining parallel elaborations.
IEEE Transactions on Software Engineering, 15(2):198-208, February 1989. Available
as research report # RS-88-216 from ISI, 4676 Admiralty Way, Marina del Rey, CA
90292.

[23] M.S. Feather. Transformational implementation of historical reference. In B. Moeller,
editor, Constructing Programs from Specifications, pages 225-242. North-Holland,
1991. Proceedings of the IFIP TC2/WG 2.1 Working Conference on Constructing
Programs from Specifications, Pacific Grove, CA, USA, 13-16 May 1991.

142

[24] S. Fickas. A knowledge-based approach to specification acquisition and construction.
Technical Report 86-1, CS Dept., University of Oregon, Eugene, 1986.

[25] S. Fickas. Automating the specification process. Technical Report CIS-TR-87-05,
Department of Computer and Information Science, University of Oregon, 1987.

[26] S. Fickas and P. Nagarajan. Critiquing software specifications. IEEE Software, pages
37-47, November 1988.

[27] G. Fischer and H. Nieper-Lemke. Helgon: Extending the retrieval by reformulation
paradigm. Human Factors in Computing Systems CH189, pages 357-362, 1989.

[28] N. Goldman, D. Wile, M. Feather, and W.L. Johnson. Gist language description.
Available from USC / ISI, 1988.

[29] N.M. Goldman. Three dimensions of design development. In Proceedings, 3rd National
Conference on Artificial Intelligence, Washington D.C., pages 130-133, August 1983.

[30] C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a knowledge-
based software assistant. In Readings in Artificial Intelligence and Software Engineer-
ing. Morgan Kaufmann, Los Altos, CA, 1986.

[31] B. Gruegge and P. Hibbard. Generalized path expressions: A high-level debugging
mechanism. Journal of Systems and Software, pages 265-276, Dec 1983.

[32] R.V. Guha and D.B. Lenat. Cyc: A midterm report. AIMagazine, 11(3):32-59, 1991.

[33] R. Guindon. Knowledge exploited by experts during software system design. Int. J.
Man-Machine Studies, 33:279-304, 1990.

[34] J. Hagelstein. Declarative approach to information system requirements. Journal of
Knowledge-Based Systems, 1(4):211-220, September 1988.

[35] D. Harel. Biting the silver bullet: Toward a brighter future in system development.
IEEE Computer, pages 8-20, Jan 1992.

[36] D. Harel and et al. Statemate: A working enmironment for the development of com-

plex reactive systems. In Proceedings, 10th International Conference on Software
Engineering, Singapore. Computer Society Press of the IEEE, April 1988.

[37] D. Harris and A. Czuchry. The Knowledge-Based Requirements Assistant. IEEE
Expert, 3(4), 1988.

[38] D. R. Harris. A hybrid structured object and constraint representation language.
Proceedings of the Fifth National Conference on Artificial Intelligence, 2, 1986.

143

[39] W. Hseush and G.E. Kaiser. Modeling concurrency in parallel debugging. In Pro-
ceedings of the ACM SIGPLAN Symposium on Principles and Practices of Parallel
Programming, pages 11-20. ACM Press, March 1990. Published in SIGPLAN Notices,
Vol. 25 No. 3, March 1990.

[40] K.E. Huff and V.R. Lesser. The GRAPPLE plan formalism. Technical Report 87-08,
U. Mass. Department of Computer and Information Science, April 1987.

[41] V. Hunt and A. Zellweger. The FAA's Advanced Automation System: Strategies for
future air traffic control systems. IEEE Computer, 20(2):19-32, February 1987.

[42] P. Johnson. Structural evolution in exploratory software development. In Proceedings
of the AAAI Spring Symposium on Software Engineering, pages 35-39, 1989.

[43] W.L. Johnson. Specification via scenarios and views. In Proceedings of the 3d Inter-
national Software Process Workshop, pages 61-63, Breckenridge, CO, 1986.

[44] W.L. Johnson. Deriving specifications from requirements. In Proceedings of the 10th
International Conference on Software Engineering, pages 428-437, 1988.

[45] W.L. Johnson. Specification as formalizing and transforming domain knowledge. In
Proceedings of the AAAI Workshop on Automating Software Design, pages 48-55, St.
Paul, MN, 1988.

[46] W.L. Johnson and M.S. Feather. Using evolution transformations to construct speci-
fications. In Automating Software Design, pages 65-92. AAAI Press, 1991.

[47] W.L. Johnson and K. Yue. An integrated specification development framework. Tech-
nical Report RS-88-215, USC / Information Sciences Institute, 1988.

[48] W.P. Jones. 'As We May Think?': Psychological Considerations in the Design of a
Personal Filing System. Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.

[49] Guttag J.V., J.J. Horning, and J.M. Wing. The Larch family of specification lan-
guages. IEEE Software, pages 24-36, September 1985.

[50] H.A. Kautz and P.B. Ladkin. Integrating metric and qualitative temporal reasoning.
Proc. Ninth National Conference on Artificial Intelligence, pages 241-245, 1991.

[51] V.E. Kelly and U. Nonnenmann. Reducing the complexity of formal specification
acquisition. In Proceedings of thr' AAAI-88 Workshop on Automating Software Design,
pages 66-72, St. Paul, MN, 1988.

[52] N.G. Leveson. Software safety: Why, what, and how. Computing Surveys, 18(2):125-
163, 1986.

144

[53] Julio Liete. Viewpoint Resolution in Requirements Elicitation. PhD thesis, Univ. of
California, Irvine, 1988.

[54] M. Lubars and M. Harandi. Addressing software reuse through knowledge-based
design. In Software Reusability, volume 2, pages 345-377. Addison Wesley, 1989.

[551 W. Mark, S. Tyler, J. McGuire, and J. Schlossberg. Commitment-based software
development. To appear in IEEE Transations on Software Engineering.

[56] U. Meyer. Techniques for partial evaluation of imperative languages. In Proceedings of
Symposium on Partial Evaluation and Semantic-Based Program Manipulation, pages
94-105, Yale Univ., New Haven, CT, June 1991.

[571 M.C. Mozer. Inductive information retrieval using parallel distributed computation.
Institute of Cognitive Science Report 8406, 1984.

[58] J.J. Myers and W.L. Johnson. Towards specification explanation: Issues and lessons.
In Proceedings of the 3d Knowledge-Based Software Assistant Conference, pages 251-
269, Rome, NY, 1988.

[59] K. Narayanaswamy. Static analysis-based program evolution support in the Common
Lisp Framework. In Proceedings of the 10th International Software Engineering Conf.,
1988.

[601 G. Nelson and D.C. Oppen. Simplification by cooperating decision procedures. ACM
Trans. on Programming Languages and Systems, 1(2), 1979.

[61] C. Niskier, T. Maibaum, and D. Schwabe. A look through PRISMA: Towards plural-
istic knowledge-based environments for software specification acquisition. In Proceed-
ings, 5th International Workshop on Software Specification and Design, Pittsburgh,
Pennsylvania, May, pages 128-136. Computer Society Press of the IEEE, 1989.

[62] D. A. Norman and D. G. Bobrow. Descriptions: An intermediate stage in memory
retrieval. Cognitive Psychology, pages 107-123, 1979.

[63] P.F. Patel-Schneider, R.J. Brachman, and H.J. Levesque. Argon: Knowledge repre-
sentation meets information retrieval. Proc. of First Conference on AI Applications,
pages 280-286, 1984.

[64] R. Prieto-Diaz and P. Freeman. Classifying software for reusability. IEEE Software,
5(1), January 1987.

[65] The KBSA Project. Knowledge-based specification assistant: Final report. Available
from USC/Information Sciences Institute, 1988.

145

[66] S.P Reiss. Pecan: Program development systems that support multiple views. IEEE
Trans. on Software Engineering, SE-11(3):276-285, March 1985.

[67] H.B. Reubenstein and R.C. Waters. The Requirements ýpprentice: An initial sce-
nario. In Proc. of the 5th International Workshop on Soft,_i,7 Specification and De-
sign, pages 211-218, Pittsburgh, PA, May 1989. Computer Society Press of the IEEE.

[68] W.N. Robinson. Integrating multiple specificationss using domain goals. In Proceed-
ings, 5th International Workshop on Software Specification and Design, Pittsburgh,
Pennsylvania, May, pages 219-226. Computer Society Press of the IEEE, 1989.

[69] W.N. Robinson. Negotiation behavior during requirement specification. In Proceedings
of the 12th International Conference on Software Engineering, pages 268-276, 1990.

[70] D.R. Smith. Automating the development of software. In Proceedings of the 5th KBSA
Conference, Rome, NY, 1990. Data Analysis Center for Software.

[71] R. Stallman and Sussman G. J. Forward reasoning and dependency-directed back-
tracking. Artificial Intelligence, 9:135-196, 1977.

[72] T. A. Standish. An essay on software reuse. IEEE Transactions on Software Engi-
neering, 10(5):494-497, September 1984.

[73] G.L. Jr. Steele. The definition and implementation of a computer programming lan-
guage. Technical Report 595, MIT Artificial Intelligence Laboratory, 1980.

[74] G.L. Jr. Steele. Common Lisp: The Language (2d edition). Digital Press, 1990.

[75] W. Swartout. Gist English generator. In Proceedings of the National Conference on
Artificial Intelligence, pages 404-409, Pittsburgh, PA, 1982. AAAI.

[761 L. Terveen. Person-computer cooperation through collaborative manipulation. Tech-
nical Report ACT-AI-048-91, MCC, 1991.

[77] R. C. Waters. System validation via constraint modeling. Technical report, MIT",
Number= "AI Memo No. 1020, 1988.

[78] D.S. Wile. Integrating syntaxes and their associated semantics. Available from the
author at USC/Information Sciences Institute, 4676 Admiralty Way, Marina del Rey,
CA 90292, USA - wile@isi.edu.

[79] D.S. Wile. Organizing programming knowledge into syntax-directed experts. In Pro-
ceedings, International Workshop on Advanced Programming Environments, Trond-
heim, Norway, pages 551-565. Springer-Verlag, 1986.

146

[80] K. Yue. Representing first order logic-based specifications in petri-net-like graphs.
In Proceedings, 5th International Workshop on Software Specification and Design,
Pittsburgh, Pennsylvania, May, pages 291-293. Computer Society Press of the IEEE,
1989.

[81] P. Zave. An insider's evaluation of PAISLey. IEEE Trans. Software Eng., SE-17:212-
225, 1991.

-US GOVERNMENT PRINTING OFFICE . -"

147

